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Abstract
DsixTools is a Mathematica package for the handling of the Standard Model Effective
Field Theory (SMEFT) and the Low-energy Effective Field Theory (LEFT) with opera-
tors up to dimension six, both at the algebraic and numerical level. DsixTools contains
a visually accessible and operationally convenient repository of all operators and param-
eters of the SMEFT and the LEFT. This repository also provides information concerning
symmetry categories and number of degrees of freedom, and routines that allow to imple-
ment this information on global expressions (such as decay amplitudes and cross-sections).
DsixTools also performs weak basis transformations, and implements the full one-loop
Renormalization Group Evolution in both EFTs (with SM beta functions up to five loops
in QCD), and the full one-loop SMEFT-LEFT matching at the electroweak scale.
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1 Introduction

The experimental success of the Standard Model (SM) of particle physics and the absence
of new physics (NP) signals after LHC run 2, seem to indicate the presence of a mass gap
between the Electroweak (EW) scale and the scale of potential new dynamics. If this is the
case, non-standard effects in processes at energy scales much smaller than the scale of NP
can be described within Effective Field Theory (EFT).

Above the EW scale, the relevant EFT which contains the SM as the low-energy limit is
called the Standard Model EFT (SMEFT). The SMEFT accounts for the effect of unknown
heavy degrees of freedom by extending the SM Lagrangian with higher-dimensional opera-
tors invariant under the SM gauge group. The dominant NP contributions to most of the
processes of phenomenological interest are then parametrized by Wilson Coefficients (WCs)
of SMEFT operators of canonical dimension five and six [1].

Below the EW scale, heavy SM particles (massive bosons and the top quark) also decou-
ple, and the dynamics is described by the Low-Energy EFT (LEFT). This theory consists
of the QCD and QED Lagrangians for the light SM fermions complemented with a set of
higher-dimensional operators compatible with the gauge symmetries of QED and QCD. The
Wilson coefficients of these higher dimensional operators encode all the physics related to
heavy SM states and the NP degrees of freedom, dominated again by operators of canonical
dimension five and six [2]. The LEFT is more general than the SMEFT since it is still the
correct low-energy EFT when there are new particles at the EW scale. However, under the
SMEFT hypothesis, one can define the LEFT (fix its WCs) by doing a matching to the
SMEFT at the EW scale.

The basis for automation of calculations within these two EFTs arises from work done
within the last decade. First, a complete non-redundant operator basis for the SMEFT up to
dimension six was derived in Ref. [3] (aka the Warsaw basis). The complete set of one-loop
anomalous dimensions of the operators in the Warsaw basis was then calculated in a series of
papers [4–7]. Similarly, a complete and non-redundant basis for the LEFT up to dimension
six was constructed in Ref. [2] (aka the San Diego basis), and the full one-loop anomalous
dimensions were calculated in Ref. [8]. Finally, the tree-level and one-loop matching between
the LEFT and the SMEFT was performed in Refs. [2] and [9], respectively (see also [10, 11]).

These advances, together with simultaneous theoretical developments occurring in the
field (such as the matching of specific models to the SMEFT at one loop [12–22], or the
automation of calculations by means of several computer tools [23–35]), pave the way to the
systematic use of EFT methods in the analysis of new physics models. The power of the this
approach is that it allows to relate physics at disparate energy scales, in our case properties
of the high-energy dynamics at the new physics scale ΛUV, with measurements that take
place at low energies, while performing an expansion in 1/ΛUV that allows to keep leading
new physics effects in a consistent manner.
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The Mathematica1 package DsixTools [24] was developed as a tool to implement such
automated calculations. Since the first release of DsixTools in 2017, further development of
the package has occurred in two directions: 1) implementation of new theory results (such
as moving from the WET [37] to the LEFT, and the implementation of higher-order effects),
and 2) improvements and refinements at the front-end and operational levels (new routines,
input, documentation, faster methods for RG evolution, and notation). The result of these
developments is the new release DsixTools 2.0, which is available at

https://dsixtools.github.io

This paper presents a description of the program and its new features.

2 DsixTools in a nutshell

2.1 Overview of DsixTools 2.0

DsixTools is a Mathematica package for analytical and numerical computations within the
SMEFT and the LEFT. It features routines devoted to RGE running (in the SMEFT and in
the LEFT), matching between the two theories, basis transformation, input reading (with
consistency checks) and output generation. DsixTools also contains a comprehensive and
pedagogical repository with routines that allow the user to display lists of operators with
certain properties, and information on WCs in the SMEFT and the LEFT.

The current version of DsixTools (DsixTools 2.1) fully implements the one-loop SMEFT
RGEs, the complete one-loop matching between the SMEFT and the LEFT, and the one-
loop LEFT RGEs, all up to operators of canonical dimension six. In what concerns the
SMEFT RGE running, DsixTools contains:

• Three-loop SM RGEs from Refs. [38–41], as well as five-loop QCD corrections to the
running of the strong gauge coupling and quark Yukawa couplings from Refs. [42–44]. 2

• One-loop RGEs for the dimension-six operators in the Warsaw basis from Refs. [4–6].3

• One-loop RGEs for the dimension-six baryon-number-violating operators from Ref. [7].

• One-loop RGE for the dimension-five lepton-number-violating operator from Ref. [49].

Regarding the SMEFT-LEFT matching, DsixTools implements:
1Mathematica is a product from Wolfram Research, Inc. [36].
2 The one- and two-loop SM RGEs were computed in [45–47] and [48], respectively.
3 We have taken into account the errata published in http://einstein.ucsd.edu/smeft/.
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Figure 1: Scketch of the DsixTools matching-running routine. The DsixTools terminology
is: ΛUV=HIGHSCALE, ΛEW=EWSCALE and ΛIR = LOWSCALE. The default is EWSCALE=MZ =

91.1876 GeV.

• The tree-level matching of the SMEFT Warsaw basis to the LEFT San Diego basis at
the electroweak scale, using the results of Ref. [2]. We have independently derived the
matching relations (in two different ways), finding full agreement 4.

• The complete one-loop matching of the SMEFT Warsaw basis to the LEFT San Diego
basis at the electroweak scale, using the results of Ref. [9].

Finally, DsixTools also implements several results related to the RGE running in the LEFT:

• Four-loop QCD corrections to the strong coupling beta function and quark mass
anomalous dimensions from Ref. [50].

• One-loop RGEs for all LEFT operators up to dimension six in the San Diego basis
from Ref. [8].

The structure of DsixTools is illustrated in Fig. 1, where one can also see how they
relate to the different energy ranges and effective theories. Relevant details of the SMEFT
and LEFT implementations are given in Appendices A–C, where our conventions are also
presented.

4See the erratum at https://einstein.ucsd.edu/smeft/
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2.2 Differences with DsixTools 1.0

The list of improvements and changes that features the new version with respect to the
original version published in 2017 is substantial, and programs written with DsixTools 1.0

will most likely not work with DsixTools 2.0 and later versions. Thus we collect here a
summary of the most relevant changes:

• DsixTools 2.0 is now very easy to install, directly within Mathematica. See Section 3.

• The notation for WCs has changed such that now they are dimensionful. For example
the SMEFT Lagrangian is given by:

LSMEFT = L(4)
SM +

∑
k

C
(5)
k Q

(5)
k +

∑
k

C
(6)
k Q

(6)
k +O

(
1

Λ3
UV

)
, (2.1)

with C(5)
k ∼ Λ−1UV and C(6)

k ∼ Λ−2UV. Same principle applies also to the LEFT WCs.

• The WET [37] basis has been superseded by the LEFT, in order to implement all the
new results derived within the latter.

• Nomenclature for operators and Wilson coefficients has been modified, mainly for
global convenience and consistency, and in part to make it closer to more common
standards (e.g. WCxf [51] or FeynRules [27]).

First, all operators in the SMEFT start with Q (e.g. Q(3)
φ` = QHl3) while the ones in

the LEFT start with O (e.g. O(V 8,LL)
ud = OudV8LL).

Second, Wilson coefficients in the SMEFT start with C (e.g. [C
(3)
φ` ]12 = CHl3[1, 2])

while the ones in the LEFT start with L (e.g. [L
(V 8,LL)
ud ]1213 = LudV8LL[1, 2, 1, 3]). In

DsixTools 1.0, flavor matrices were specified as WC[name], where name was not the
same as the name of the Wilson coefficient (e.g. WC[ϕl3] vs. ϕL3[1,2]). Flavor
matrices in DsixTools 2.0 have the same name as the WCs but with an ‘M’ in front,
e.g.

MCHl3 = {{[C(3)
φ` ]1,1, [C

(3)
φ` ]1,2, [C

(3)
φ` ]1,3}, · · · } ,

MLudV8LL = {{{{[L(V 8,LL)
ud ]1111, [L

(V 8,LL)
ud ]1112, · · · }, · · · }}} .

In addition, characters that are not trivially easy to type in Mathematica have been
avoided (e.g. ϕL3[1,2] → CHl3[1, 2] or ϕ�→ CHbox).

• Besides the two options to solve the RGEs avaliable in DsixTools 1.0 (exact numer-
ical solution and leading logarithm), DsixTools 2.0 includes a third method as the
default setting. This method employs the Evolution Matrix approach, described in Ap-
pendixD. This method is numerically very precise and it is computationally faster than
solving the RGEs exactly.
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• Many of the routines inherited from DsixTools 1.0 have changed names. For example,
all routines related to the SMEFT now start with SMEFT... and similarly for the LEFT
(e.g. SMEFTRunEGEs and LEFTRunRGEs), which makes it easier to use Mathematica’s
autocompletion feature. In addition, some routines in DsixTools 1.0 have been elim-
inated (or replaced by improved ones), and new routines have been implemented.
See Section 4.6 for the complete list of routines in DsixTools 2.0.

• DsixTools 2.0 incorporates a reference repository of information about the SMEFT
and the LEFT accessible through the routines SMEFTObjectList and LEFTObjectList,
SMEFTOperators and LEFTOperators, SMEFTParameterList and LEFTParameterList,
ObjectInfo, SMEFTOperatorsMenu and LEFTOperatorsMenu, SMEFTOperatorsGrid
and LEFTOperatorsGrid, and NIndependent. In addition, DsixTools 2.0 contains
a full Mathematica documentation system.

• Setting the input values for the Wilson coefficients in the SMEFT or the LEFT through
NewInput[...], ChangeInput[...] or ReadInputFiles[...] now checks the con-
sistency of the given input, printing warnings when necessary. The same is done
when setting scales through NewScale[...]. The input in DsixTools 2.0 is basis-
independent. See Section 4.2 for details. The user can also check the input values for
the WCs at any time using the routines InputValues, SMEFTLagrangian[HIGHSCALE]
or LEFTLagrangian[EWSCALE].

• DsixTools 2.0 includes higher order corrections to matching coefficients and RG coef-
ficients as compared to DsixTools 1.0. In particular it includes SM beta functions up
to five loops, and LEFT matching conditions in the SMEFT at one loop.

3 Downloading, installing and loading DsixTools

DsixTools is free software under the copyright of the GNU General Public License. There
are two ways to download the package and install it:

Automatic installation

The simplest way to download and install DsixTools is to run the following command in a
Mathematica session:

Import ["https :// raw.githubusercontent.com/DsixTools/DsixTools ↪→
/master/install.m"];

This will download and install DsixTools in the Applications folder of the Mathematica base
directory, activate the documentation and load the package. During the installation process,
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a pop up window will appear asking if you want to convert the .m files to .mx format. This
option is recommended, since it significantly reduces the DsixTools loading time.

Manual installation

Alternatively, the user can also download and install DsixTools manually. The package can
be downloaded from the web page [52]:

https://dsixtools.github.io

We recommend placing the DsixTools folder inside the Applications folder of Mathematica’s
base directory, after which loading the package will be automatic. Alternatively, the user
can place the DsixTools folder in a different directory. In this case, loading the package will
require specifying previously its location via

pathtoDsixTools = "<directory >";
AppendTo[$Path , pathtoDsixTools ];

As a final step, the user can activate the documentation by moving the contents of the zip
file Documentation.zip inside the DsixTools folder, and applying

If[$VersionNumber >=12.1 , PacletDataRebuild [], RebuildPacletData []];

inside a Mathematica notebook.

Loading DsixTools

Once installed, the user can load DsixTools anytime with the command

Needs["DsixTools ‘"]

When DsixTools is loaded, a message is printed out with information about the version,
the authors, and links to the relevant references and to the DsixTools website:

A typical loading time is about 5-10 s depending on the machine, if the .m to .mx conversion
is done. When DsixTools is loaded, several (relatively heavy) Mathematica files containing
SMEFT and LEFT beta functions, RGEs and evolution matrices, as well as the SMEFT-
LEFT one-loop matching relations are loaded as well. This may be unnecessary for some
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DsixTools applications. In this case the user can force DsixTools to load without importing
such files, by evaluating the line

DsixTools ‘ImportFiles = False;

before loading DsixTools. This will reduce the loading time to under a second. If running
or matching is required after loading DsixTools in this mode, the corresponding files can be
loaded by the user a posteriori, there is no need to reload DsixTools.

4 Using DsixTools

In this Section we describe how to use DsixTools in some detail, explaining the main features
of the package with specific examples of use. At the end of the section we provide a complete
list of DsixTools routines and functions with a brief explanation of each one of them.

4.1 A DsixTools program

The following is a simple but complete DsixTools program which takes input from the user
for the SMEFT Lagrangian at the UV scale ΛUV = HIGHSCALE, and calculates the LEFT
WCs at the scale µ, chosen here equal to ΛIR = LOWSCALE, printing out one specific WC for
illustration:

Needs["DsixTools ‘"]

NewScale [{ HIGHSCALE -> 10000}];

NewInput [{Clq1[1,1,1,2] -> 1/ HIGHSCALE ^2, Clq1[1,1,2,1] -> ↪→
1/ HIGHSCALE ^2, CH -> -0.5/ HIGHSCALE ^2}];

RunDsixTools;

D6run[LeuVLL [2,2,1,1]] /. \[Mu] -> LOWSCALE

The program begins by loading DsixTools, as explained in Sec. 3. In the next line we
provide the numerical value for the global variable HIGHSCALE which corresponds to ΛUV

HIGHSCALE = ΛUV = 10TeV .

In DsixTools all scales are given in GeV. The third line defines the input values by
means of the NewInput DsixTools routine. In this case the user is implicitly specifying that
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Figure 2: Example of a minimal DsixTools program flowchart.
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the input WCs correspond to the SMEFT, and these take the values[
C

(1)
`q

]
1112

=
[
C

(1)
`q

]
1121

=
1

Λ2
UV

= 10−8 GeV−2 , Cϕ = − 0.5

Λ2
UV

= −5 · 10−9 GeV−2 , (4.1)

at the new physics scale ΛUV = 10 TeV, with all the other WCs set to zero. We note
that [C

(1)
`q ]1112 = [C

(1)
`q ]1121 follows from the hermiticity of the Lagrangian, which implies the

general relation [C
(1)
`q ]aabc = [C

(1)
`q ]∗aacb. If this condition were not respected by the arguments

of the NewInput routine, a message would be issued by DsixTools and a modification of
the input values in order to restore consistency would be applied (see Section 4.2). In the
next line, the program makes use of the RunDsixTools routine. This can be regarded
as the master DsixTools routine, since it performs the three main tasks this package is
designed for: it runs the SMEFT parameters from ΛUV = HIGHSCALE to ΛEW = EWSCALE,
matches to the LEFT, and finally runs the LEFT parameters from ΛEW = EWSCALE to
ΛIR = LOWSCALE. The variable LOWSCALE takes the default value LOWSCALE= 5GeV. After
evaluating RunDsixTools, the D6run function becomes available. The last line of the program
precisely reads these results by printing the value of the LEFTWC [LV,LLeu ]2211 at µ = ΛIR = 5

GeV, obtaining a numerical result[
LV,LLeu

]
2211
' 6.22 · 10−6 GeV−2 .

The general flowchart of this minimal program can be seen in Fig. 2. It clearly involves
most of the main routines of DsixTools and serves as an example of use in a practical sce-
nario. However, some of the functionalities used in this program offer alternative possibilities
and methods of application. For this reason, in the rest of the paper we explain in greater
detail how to take full advantage of DsixTools.

4.2 Input values in DsixTools

One of the first steps in every DsixTools program is to define the input. This includes the
numerical values of the SMEFT or LEFT parameters at the input scale, the relevant scales
for matching and RGE running (ΛUV = HIGHSCALE, ΛEW = EWSCALE and ΛIR = LOWSCALE),
and some DsixTools options. The input values for the SM parameters, which are used by
default and in the evolution matrix method, are given in Table 1.

There are two ways of defining an input. The first way, which we call notebook input,
is to introduce the input values directly in the Mathematica notebook. This is the method
used in the example program shown in Section 4.1. Alternatively, the user can also set the
input by reading external files containing the input values. We will refer to this approach
as external files input. We now explain these two approaches and how to use them. For
definiteness, we will concentrate on the SMEFT. For setting input in the LEFT, the steps
and routines are completely analogous.
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Table 1: Default DsixTools inputs for the SM parameters, taken in the MS scheme at the renor-
malization scale MZ = 91.1876 GeV. See also footnote 5.

Parameter Value

g 0.6515

g′ 0.3576

gs 1.220

λ 0.2813

m2 8528 GeV2

Γu


7.109× 10−6 −8.175× 10−4 (8.176 + 3.265 i)× 10−3

1.636× 10−6 3.551× 10−3 −4.017× 10−2

(0.782 + 2.522 i)× 10−8 1.540× 10−4 0.970


Γd diag(1.551× 10−5, 3.165× 10−4, 1.637× 10−2)

Γe diag(2.944× 10−6, 6.071× 10−4, 1.021× 10−2)

θs, θ, θ
′ 0

Notebook input

The simplest way of setting the input in DsixTools is to introduce the values directly in
the Mathematica notebook. The DsixTools options and the relevant scales for the RGE
running can be introduced easily. For instance,

UseRGEsSM = 0;
NewScale [{HIGHSCALE - >10000}];

would set the UseRGEsSM option to 0 and the high-energy scale ΛUV = 10 TeV. The SMEFT
or LEFT parameters (including the SM or QCD & QED inputs) can be introduced by means
of the NewInput routine. This routine resets the input so that the WCs take their default
values and then applies the changes indicated by the user.5 For instance, the program of
Sec. 4.1 includes the line

5 The default SMEFT and LEFT values correspond to the SM and QED&QCD benchmarks, respectively,
in both cases with all Wilson coefficients of dimension-five and -six operators set to zero and default values
for the coefficients of dimension ≤ 4 operators (see Table 1). Corrections to the numerical values of these
latter coefficients due to the presence of dimension > 4 operators should be taken properly into account
separately (see e.g., Ref. [53]). This can be done on a case-by-case basis with the aid of DsixTools itself. A
systematic treatment of these corrections shall be implemented in a future version of DsixTools.
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NewInput [{Clq1[1,1,1,2] -> 1/ HIGHSCALE ^2, Clq1[1,1,2,1] -> ↪→
1/ HIGHSCALE ^2, CH -> -0.5/ HIGHSCALE ^2}];

which, as discussed already, sets [C
(1)
`q ]1112 = [C

(1)
`q ]1121 = 1/Λ2

UV = 10−8 GeV−2 and Cϕ =

−0.5/Λ2
UV = −5 · 10−9 GeV−2, if the new physics scale ΛUV is previously set to 10 TeV. We

note that only the non-vanishing WCs must be given and the rest are assumed to be zero.
As explained in Appendix C, some of the 2- and 4-fermion operators in the SMEFT and

the LEFT possess specific symmetries under the exchange of flavor indices. In particular,
these symmetries imply conditions to be enforced in the input WCs in order to avoid two
types of inconsistencies:

1. Hermiticity: The hermiticity of the Lagrangian imposes certain conditions on some
WCs, and these must be respected by the input provided by the user. For instance,
an input with [C

(1)
`q ]1112 6= [C

(1)
`q ]∗1121 would be inconsistent.

2. Antisymmetry: Some LEFT operators are antisymmetric under the exchange of
two flavor indices and thus vanish. For practical reasons, we have not excluded these
operators from the WC input list, but rather require that the corresponding WCs
vanish. For instance, an input with [Lνγ]11 6= 0 would be inconsistent.

In order to avoid potential issues associated to inconsistent inputs, DsixTools includes
user-friendly input routines that simplify the user’s task. DsixTools accepts input values
for the WCs of any set of operators (belonging to the Warsaw or San Diego bases) and
then checks for possible consistency problems. When the user’s input is not consistent,
a warning is issued and DsixTools corrects the input by replacing it by a new one that
ensures a complete consistency of the Lagrangian. For instance, this would be case if the
user initializes HIGHSCALE and then runs

NewInput [{Clq1[1,1,1,2] -> 1/ HIGHSCALE ^2}];

since this command sets [C
(1)
`q ]1112 = 1/Λ2

UV and [C
(1)
`q ]1121 = 0 6= [C

(1)
`q ]∗1112. The list of invalid

input values can be seen by clicking on a button named Input errors that appears after
running NewInput. DsixTools fixes this inconsistency by defining L = 1

2
(Lin + L∗in), where

Lin is the input Lagrangian containing the inconsistency. 6 The resulting input values after
this correction are [C

(1)
`q ]1112 = [C

(1)
`q ]1121 = 1/(2Λ2

UV), now satisfying [C
(1)
`q ]1121 = [C

(1)
`q ]∗1112.

The hermiticity correction only needs to be applied to those operators for which we do not
need to add explicitly its hermitian conjugates in the Lagrangian because they are already
included among their flavor components.

We finally note that our prescription can modify other flavor components of the Wilson
coefficient of the operator that is related to the inconsistent input by the two reasons given
above. In order to make sure that the input has been correctly introduced, the user should

6 Even though this correction is only applied when the input Lagrangian is not Hermitian, we note that
in case of a consistent input this change would have no effect.
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pay attention to the input error messages, and check the values of the Wilson coefficients
that could have been potentially affected using, for instance, the InputValues routine (see
below).

Aside from these consistency issues, DsixTools also transforms all WCs to the symmetric
basis, defined as the basis in which the WCs follow the same symmetry conditions as the
associated operators. We refer to Appendix C.3 for more information about this basis. For
example, in the symmetric basis [C``]1122 = [C``]2211 since [Q``]1122 = [Q``]2211. This is
the basis used internally by DsixTools. Nevertheless, the user needs not to worry about
this, since the input is always unambiguous. In fact, this is one of the virtues of the
input system in DsixTools 2.0: the user introduces directly a Lagrangian, which as such is
basis-independent, e.g.,

NewInput [{Cll[1,1,2,2] -> x, Cll[2,2,1,1] -> y}];

sets the input SMEFT Lagrangian

LSMEFT = LSM + x [Q``]1122 + y [Q``]2211 , (4.2)

which is unambiguous, and understood by DsixTools with no regard to the index symmetry
relation [Q``]1122 = [Q``]2211.

After defining the input values with the NewInput routine the dispatch InputValues gets
(re)initialized. This dispatch can be used to print the input value of any SMEFT or LEFT
parameter. For instance, after running

NewInput [{Cll[1,1,2,2] -> 10^( -8) }];

one can evaluate

Cll[1,1,2,2] /. InputValues

and obtain the result 5 · 10−9 GeV−2. This is the input value given with the NewInput
routine to the SMEFT WC [C``]1122, after transforming to the symmetric basis. In this basis
[C``]2211 = [C``]1122, and due to [Q``]2211 = [Q``]1122 this is equivalent to the input given by
the user:

User’s input: [C``]1122 = 10−8 GeV−2 and [C``]2211 = 0 ,

In symmetric basis: [C``]1122 = 5 · 10−9 GeV−2 and [C``]2211 = 5 · 10−9 GeV−2 .

This can be clearly seen by evaluating the command

MCll /. InputValues

which prints the complete C`` WC in array form. The input values in the independent basis
(see AppendixC.3) can be obtained by applying the routine ToIndependent:

ToIndependent[MCll ,6] /. InputValues
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which in this case results in the same input introduced before since [C``]1122 is one of the
independent WCs.

Once the input values have been set, the user can change them individually at any moment
in the notebook. This is done with the ChangeInput routine. In contrast to NewInput, this
routine does not reset the input to default values, but just applies the changes demanded by
the user. For instance,

ChangeInput [{CHG -> 10^( -6)}]

would change the value of CϕG to 10−6 GeV−2 in the current InputValues dispatch, without
altering the values of the other SMEFT parameters. Exactly as NewInput, the ChangeInput
routine also checks the consistency of the input Lagrangian provided by the user and then
translates the 2- and 4-fermion WCs to the symmetric basis.

Since version 2.1, DsixTools also admits input generated with MatchMakerEFT [54], a
program for computing the tree-level and one-loop matching of general UV theories onto
general effective field theories. In particular, MatchMakerEFT can be used to match a UV
model onto the SMEFT. The results obtained with this tool are saved in a text file containing
analytical expressions for all the SMEFT parameters in terms of the parameters in the UV
model. This file can be easily read by using the NewInput routine. When doing this, all the
parameters in the UV model as well as HIGHSCALE must be assigned numerical values:

NewInput [{ MMEfile -> "MMEfile.dat", MS -> 1000, lam2 -> 0.1,
lam3 -> 0.2}, HIGHSCALE -> 1000]

The resulting InputValues dispatch contains numerical values for all the SMEFT param-
eters, as obtained after the one-loop matching to the specific UV model considered by the
user.

External files input

Alternatively, the user can set the program options and provide input values from external
files. This is done with the ReadInputFiles routine. For instance,

ReadInputFiles [" Options.dat","WCsInput.dat","SMInput.dat", ↪→
"SMEFT "]}

applies the content of three SMEFT input files.7 The file Options.dat contains the option
values to be used in the program, the file WCsInput.dat contains the input values for the
SMEFT WCs at µ = ΛUV, and the file SMInput.dat contains the input values for the SM
parameters. Examples for all of these files (and the corresponding ones for the LEFT) can
be found in the IO folder of DsixTools. Each of the entries in these files are accompanied

7The use of input files for the LEFT is completely analogous, the only difference being that instead of
input values for the SM parameters one must provide input values for the QCD & QED parameters, and
that the last option should be "LEFT" instead of "SMEFT".
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by comments that make them self-explanatory. Similarly to the case of notebook input, the
InputValues dispatch gets initialized and can be used after using ReadInputFiles.

The default DsixTools input and output format is inspired by the Supersymmetry Les
Houches Accord (SLHA) [55, 56]. Input files are distributed in blocks, each devoted to a set
of parameters. Any complex parameter is given in two blocks, so that real and imaginary
parts should be provided separately. Furthermore, WCs carrying flavor indices should be
provided individually for each flavor combination. Analogously to the notebook input case,
all WCs are assumed to vanish by default. Therefore, it suffices to include the non-zero
WCs (and only these) in the input card. Furthermore, the routine ReadInputFiles will also
check that the set of input values provided by the user is consistent. If any of the hermiticity
or antisymmetry conditions on the WCs are not satisfied, a message will be issued and the
corresponding input values modified in order to restore consistency.

Additionally, DsixTools can also read WCs input files in WCxf format [51], a standard
data exchange format for numerical values of Wilson coefficients. In this case, the WCs
input card can be a JSON or YAML file. Note however that reading YAML input files requires
previous installation of a YAML importer for Mathematica [57]. For more details about the
WCxf format, such as the specific fermion basis that is implicitly assumed, we refer to [51].

4.3 RGE running

Once the initial conditions at some energy scale Λstart are defined, the user can apply the
RGEs to obtain the resulting Lagrangian parameters at the different energy scale Λend.
The SMEFT running between ΛUV = HIGHSCALE and ΛEW = EWSCALE is performed with
the SMEFTRunRGEs routine, while the LEFT running between ΛEW = EWSCALE and ΛIR =

LOWSCALE is performed with the LEFTRunRGEs routine. Alternatively, the user can also
perform the full RGE evolution from ΛUV > ΛEW down to ΛIR < ΛEW by means of the
RunDsixToolsmaster routine, which internally makes use of SMEFTRunRGEs and LEFTRunRGEs
and also applies the SMEFT-LEFT matching at ΛEW with SMEFTLEFTMatch.

DsixTools has three different methods for the resolution of the RGEs, which the user
can choose by setting the flag RGEsMethod:

• “Exact” (RGEsMethod = 1): This method applies the Mathematica internal command
NDSolve for the numerical resolution of the differential equations. Given the large
number of differential equations involved in this case (several thousands), this might
be time consuming, with each evaluation requiring a few (< 10) seconds, the exact
number depending on the particular case and computer.

• “First leading log” (RGEsMethod = 2): This approximate method might be sufficient
for many phenomenological studies, in particular when the initial and final scales are
not too far from each other. The solution of the RGEs is obtained as

Ci(µ) = Ci(Λstart) +
βi

16π2
log

(
µ

Λstart

)
, (4.3)
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where Ci is any of the running parameters, µ is the renormalization scale and βi is the
beta function for the Ci parameter evaluated at µ = Λstart. This method is much faster
but neglects leading log resummation.

• “Evolution matrix” (RGEsMethod = 3): This method uses an evolution matrix formal-
ism, explained in detail in Appendix D.

By default, the SM parameters are assumed to be given at the electroweak scale ΛEW =

MZ = 91.1876 GeV. Therefore, before running down from ΛUV to ΛEW they must be
computed at ΛUV. In case the user chooses to solve the RGEs with RGEsMethod=1 (NDSolve)
or RGEsMethod=2 (leading log), this can be done by running up from the electroweak scale
using pure SM RGEs, hence neglecting possible deviations caused by non-zero SMEFT
WCs.8 However, in case the user prefers to give the SM parameters directly at the high-
energy scale ΛUV, this can be done by setting the UseRGEsSM option to 0. This choice is
recommended when the user wants to use the First leading log method to solve the RGEs.
In the case the user chooses RGEsMethod=3 (DsixTools default) for the resolution of the
RGEs (the evolution matrix method), this is implicitly taken into account. Our derivation
of the evolution matrix already enforces the SM parameters to be fixed to their measured
values at the EW scale.

The user chooses between these three methods by setting the global option RGEsMethod
to 1 (for the “Exact” method), to 2 (for the “First leading log” method) or to 3 (for the
“Evolution matrix” method), via the routine SetRGEsMethod. After running, the results are
saved in the function D6run, such that D6run[parameter] returns the parameter parameter
after RGE running as a function of the renormalization scale µ. Therefore, the user can
easily read the results by running commands such as

D6run[Clq1 [2,2,3,3]] /. \[Mu] -> EWSCALE

which would give the result for [C
(1)
`q (ΛEW)]2233.

The results obtained after running can be also exported to a text file. This is done
with the routines SMEFTrunnerExport[] and LEFTrunnerExport[], which generates the
files Output_SMEFTrunner.dat or Output_LEFTrunner.dat in each case, with SLHA format
(completely analogous to the WCs input card in this format). Alternatively, the user can
export the results into text files following the WCxf convention [51] by adding an argument to
the previous routines: SMEFTrunnerExport[format] and LEFTrunnerExportWCXF[format],
with format being JSON or YAML.

8The user can check the validity of this approximation by using the DsixTools routines, for instance by
checking whether the resulting values for the SM parameters at the electroweak scale (after running down)
do not match their initial values. This can be fixed by readjusting the SM parameters at ΛUV. We note,
however, that one should also take into account NP corrections to the standard electroweak parameters
induced by non-zero SMEFT WCs.
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The evolution matrix method is also used internally by default when evaluating the
routines SMEFTEvolve and LEFTEvolve. These routines provide a semi-analytical solution
of the WC RGEs. For example,

EvolveSMEFT[CdG[2,2], EWSCALE , HIGHSCALE]

returns an analytical expression for the SMEFT WC [CdG]22 at µ = ΛEW as a function of
the SMEFT parameters at µ = ΛUV, with numerical coefficients. This easily allows the user
to identify the most relevant contributions to the running, as well as running fast numerical
scans of the EFT parameter space.

Finally, we point out that DsixTools can also be used for analytical calculations involving
the SMEFT or LEFT beta functions, since these are available to the user right after loading
the package. They can be printed simply by evaluating β[parameter], where parameter
must be a valid SMEFT or LEFT parameter (a member of SMEFTParameterListTotal
or LEFTParameterListTotal). For instance, β[LdddSRR[2, 3, 3, 3]] returns the beta
function of the LEFT WC [LS,RRddd ]2333.

4.4 SMEFT-LEFT matching at the electroweak scale

In the first step of the matching process, DsixTools transforms all the SMEFT parameters
at the EW scale to the up basis, applying the required biunitary transformations to the
fermion mass matrices (which include contributions from dimension-six operators). The
up basis, defined in AppendixA, allows one to properly identify the top quark, one of
the fields that decouples in the matching. After this transformation, the LEFT parame-
ters at the electroweak scale are computed, using either the full tree-level matching [2] 9 (if
MatchingLoopOrder = 0) or the full one-loop matching [9] (if MatchingLoopOrder = 1). In
order to set the value of MatchingLoopOrder prior to the matching procedure, the user can
use the routine SetMatchingLoopOrder. The result of the matching of the LEFT coefficients
at the EW scale is given in the tree-level mass basis.

The SMEFT-LEFT matching is performed by evaluating

SMEFTLEFTMatch;

This routine (re)initializes the Match dispatch, which can be used to obtain the numerical
values of the LEFT parameters after the matching at the electroweak scale. Therefore

LeeVLL [1,1,1,1] /. Match

would return the numerical value of [LV,LLee (ΛEW)]1111 in units of GeV−2. The corresponding
analytical expressions can be obtained by using MatchEW, e.g.

9 We have independently derived the tree-level results in two different ways, finding full agreement with
the updated results posted at https://einstein.ucsd.edu/smeft/.
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LeeVLL [1,1,1,1] // MatchEW

Note that MatchEW does not require running SMEFTLEFTMatch.
Since the LEFT is more general than the SMEFT low-energy limit, not all the LEFT

operators are generated from a matching to the SMEFT. For instance, applying the command
MLνγ /.MatchAnalytical would return a 3×3 matrix full of zeros, since the LEFT operator
Oνγ is not present in the SMEFT.

Furthermore, as explained, the first step of the routine SMEFTLEFTMatch is to rotate all
SMEFT parameters to the fermion up basis. These rotations can be readily obtained by
means of the SMEFTRotateParameters routine by evaluating e.g.,

{ToUpBasis , ToDownBasis} = SMEFTRotateParameters[EWSCALE ];

This will create the dispatches ToUpBasis and ToDownBasis, which can be used to obtain
any SMEFT parameter in the up and down bases at the electroweak scale. For instance,

CuH[1,2] /. ToUpBasis
CuH[1,2] /. ToDownBasis

would return [Cuϕ]12 in GeV in the up and down bases at ΛEW. We also note that the
SMEFTRotateParameters routine can be used to obtain the SMEFT parameters in the up
and down bases at any scale µ ≥ ΛEW. For instance, running

{ToUpBasis , ToDownBasis} = SMEFTRotateParameters [500];

creates the dispatches ToUpBasis and ToDownBasis, now applicable to obtain any SMEFT
parameter in the up and down bases at 500 GeV. Finally, if the user is interested in only
one of the two fermion bases, up or down, the routine to be used is SMEFTToNewBasis. For
instance,

ToUpBasis = SMEFTToNewBasis ["up",EWSCALE ];

would only create the ToUpBasis dispatch.

All these results can be exported to external text files with the routine EWmatcherExport.
This generates the file Output_EWmatcher.dat, in SLHA format. The results can also be
exported in WCxf convention by adding two arguments (format and name) to the previous
routine: EWmatcherExport[format,name], with format being "JSON" or "YAML". The re-
sulting file will always be in the up basis, denoted as Warsaw Up basis in the WCxf exchange
format documentation [51].

4.5 Reference guide and tools in DsixTools

DsixTools aims at a simple and visual experience. This is accomplished via a variety of
routines, some of which grant the user simple access to the most basic, useful and com-
prehensive information about the LEFT and the SMEFT, while others implement practical
operations on the Wilson coefficients.
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The first repository of information available is contained in the variables SMEFTObjectList
and LEFTObjectList, which are lists of certain objects, one for each operator of the EFT
(75 for the SMEFT, 103 for the LEFT, up to dimension six). Each object is itself a list
containing: the flavor matrix of WCs, the name of the (head of) the WCs, the name of the
operator, the symmetry category, the flavor dimension, the canonical dimension, the EFT,
the operator class, the broken symmetry (if any), and the LATEX form for both the operator
and its definition. A flattened list of all the parameters appearing in the first position of the
objects in SMEFTObjectList and LEFTObjectList is given in SMEFTParametersTotal and
LEFTParametersTotal:

SMEFTParametersTotal = Flatten[SMEFTObjectList[[All, 1]]]

LEFTParametersTotal = Flatten[LEFTObjectList[[All, 1]]]

which are all the parameters that might receive input values or output results. However,
not all these parameters are independent, and not all are complex-valued. The function
NIndependent[parameter] returns the number of independent real parameters in a given
parameter: 2 for a general complex parameter, 1 for a real parameter and 0 for a redun-
dant one (as chosen by DsixTools convention). The list of independent parameters are
contained in the lists SMEFTParameterList[] and LEFTParameterList[], which match the
operators in SMEFTOperators and LEFTOperators. For example the LEFT Lagrangian in
the “independent basis” (containing only non-redundant operators) is given by

LEFTParameterList []. LEFTOperators

In addition, in order to find the position that a parameter occupies in SMEFTParameterList[]
or LEFTParameterList[] one can use the routines SMEFTFindParameter[parameter] and
LEFTFindParameter[parameter].

The routines SMEFTParameterList and LEFTParameterList also admit arguments in
order to choose subsets of parameters with certain properties. For example

SMEFTParameterList ["D6","LNV"]

lists the non-redundant Lepton-Number-violating SMEFT parameters of canonical dimen-
sion six. For a list of attributes that can be chosen as arguments in SMEFTParameterList
and LEFTParameterList see Section 4.6.

More visual information on the properties of operators and parameters can be obtained
via a series of new routines. The routine ObjectInfo displays a large amount of useful
information on any WC, or operator of the SMEFT or the LEFT specified by the user. For
instance,

ObjectInfo[CHu]

displays a menu with information about the SMEFT WC Cϕu, including the EFT to which it
belongs, the name of the associated WC, the dimension (2, 3, 4, 5 or 6) and type (0F, 2F or
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QHu

EFT: SMEFT

Wilson Coefficient: CHu

Dimension: 6

Type: 2F

Index symmetry category: 2

Hermitian Operator

Number of independent coefficients: 6

Flavor indices: 3×3

CHu elements:

CHu[1, 1]

CHu[1, 2]

CHu[1, 3]

CHu[2, 1] = Conjugate[CHu[1, 2]]

CHu[2, 2]

CHu[2, 3]

CHu[3, 1] = Conjugate[CHu[1, 3]]

CHu[3, 2] = Conjugate[CHu[2, 3]]

CHu[3, 3]

Figure 3: Information about the SMEFT WC Cϕu obtained after evaluating ObjectInfo[CHu], or
by using the interfaces SMEFTOperatorsMenu or SMEFTOperatorsGrid.

4F), whether it corresponds to an Hermitian operator or not, the number of independent real
parameters, the number of flavor indices and the list of elements, as shown in Fig. 3. A click-
able menu with information about the SMEFT and LEFT parameters can be loaded with
SMEFTOperatorsMenu, LEFTOperatorsMenu and TotalOperatorsMenu, while grid menus
with all the SMEFT or LEFT parameters can be generated with SMEFTOperatorsGrid
and LEFTOperatorsGrid. These grids are interactive, and the definition of any operator
appears on screen when dragging the mouse pointer on top (see Fig. 4). In addition, click-
ing on the corresponding operator creates a pop-up window with the same chart created
by ObjectInfo. The Mathematica notebook OperatorsGrid.nb can be found in the main
DsixTools folder. This notebook already contains the result of using SMEFTOperatorsGrid
and LEFTOperatorsGrid, and the two grid menus can be used right after opening the note-
book, without any need to load DsixTools. This can be useful as an out of the box visual
reference on the SMEFT and the LEFT.

Concerning handy routines for handling WCs and expressions with WCs (such as ampli-
tudes or cross-sections), we highlight D6Simplify. This routine is used to simplify expres-
sions involving SMEFT or LEFT parameters, by replacing all redundant WCs in terms of
non-redundant ones and eliminating complex conjugates on real parameters. For instance,

D6Simplify [2 m2 CHq1 [3,2] CC[Gd[3 ,1]]]
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Figure 4: Result of evaluating SMEFTOperatorsGrid. Positioning the mouse on top of any operator
displays its definition, and clicking on it opens a pop-up containing the corresponding chart of Fig. 3.
This grid can be saved in a notebook and used later in a fresh Kernel without loading DsixTools.

returns 2 m2 CHq1[2,3]∗ Gd[3,1]∗, where the hermiticity relation [C
(1)
ϕq ]32 = [C

(1)
ϕq ]∗23 for the

SMEFT object C(1)
ϕq has been used in order to express the result in terms of the independent

parameter [C
(1)
ϕq ]23. As already mentioned, the function NIndependent returns the number

of independent real parameters in a given parameter. Finally, the routines ToSymmetric,
ToSymmetricSingle, ToIndependent and ToIndependentSingle can be used to transform
WCs to the symmetric and independent bases (see Appendix C.3 for the definition of these
bases). The routine CheckAndSymmetrize also checks whether all hermiticity and antisym-
metry conditions are satisfied in a given argument.

4.6 Summary of DsixTools routines

Ass soon as the package is loaded, the user can already execute all DsixTools functions
and routines. Several DsixTools global variables are also introduced at this stage. Here we
summarize the DsixTools routines available to the user.

General variables and routines

• DsixToolsVersion: Returns the loaded version of DsixTools.

• DsixToolsDir: Returns the directory holding the loaded version of DsixTools.

• HIGHSCALE: UV scale (in units of GeV) at which the SMEFT input is set and where
the running in the SMEFT starts.

• EWSCALE: Electroweak scale (in units of GeV). This is the scale at which the LEFT
input is set (either directly or through matching with the SMEFT), and where the
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running in the LEFT starts. By default EWSCALE = 91.1876 GeV, but it can be
modified by means of NewScale or NewInput.

• LOWSCALE: IR scale (in units of GeV) which sets the lower limit beyond which the
solution of the LEFT RGEs are only extrapolations. Since the LEFT in DsixTools 2.0

is the five-flavor theory, the default DsixTools value is LOWSCALE = 5.

• RunDsixTools: Master DsixTools routine. It runs the SMEFT parameters from
ΛUV = HIGHSCALE to ΛEW = EWSCALE, matches to the LEFT, and then runs the
LEFT parameters from ΛEW to ΛIR = LOWSCALE.

Reference

• SMEFTObjectList and LEFTObjectList: List of SMEFT and LEFT objects, where an
object is defined as a list of properties of a SMEFT or LEFT operator and its Wilson
coefficients.

• SMEFTOperators and LEFTOperators: List of all SMEFT and LEFT operators in
DsixTools notation.

• SMEFTParametersTotal and LEFTParametersTotal: List of all SMEFT and LEFT
parameters (i.e. couplings, mass parameters and WCs) in DsixTools notation.

• SMEFTParameterList[<attributes>] and LEFTParameterList[<attributes>]: List of
all independent SMEFT/LEFT parameters satisfying the condition given by attributes.
The sequence of attributes can be chosen from the following predefined lists in the cases
of the SMEFT and the LEFT, respectively:

SMEFT : {“SM”, “D6”, “D5”, “D4”, “D2”, “BNV”, “BNC”, “LNV”, “LNC”, “CPodd”,

“CPeven”, “X3”, “H6”, “H4D2”, “X2H2”, “F2H3”, “F2XH”, “F2H2D”, “LLLL”,

“RRRR”, “LLRR”, “LRLR”, “LRRL”, “B− violating”, “L− violating”,

“LFV”, “QFV”, “0F”, “2F”, “4F”}

LEFT : {“QED&QCD”, “D6”, “D5”, “D4”, “D3”, “D2”, “BNV”, “BNC”, “LNV”, “LNC”,

“CPodd”, “CPeven”, “X3”, “ννX”, “LRX”, “LLLL”, “RRRR”, “LLRR”, “LRLR”,

“LRRL”, “∆L = 4”, “∆L = 2”, “∆B = ∆L = 1”, “∆B = −∆L = 1”,

“LFV”, “QFV”, “0F”, “2F”, “4F”}

The meaning of each of these attributes is rather self-explanatory; however the user can
consult the meaning through the Mathematica documentation. SMEFTParameterList[]
and LEFTParameterList[] list all independent SMEFT and LEFT parameters.
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• SMEFTFindParameter[<attributes>,parameter] and
LEFTFindParameter[<attributes>,parameter]: Returns the position of parameter in
the list SMEFTParameterList[] or LEFTParameterList[]. If the optional entry at-
tributes is given, the position refers to the corresponding restricted list.

• ObjectInfo[parameter]: Prints information about parameter.

• SMEFTOperatorsMenu, LEFTOperatorsMenu and TotalOperatorsMenu: Displays a click-
able menu with information about the operators and parameters of the SMEFT and
the LEFT.

• SMEFTOperatorsGrid and LEFTOperatorsGrid: Creates a grid with all the SMEFT
or LEFT operators. Moving the mouse on top of each entry displays the definition of
the operator, and clicking on it a window with information about it is displayed.

• SMEFTLagrangian[scale] and LEFTLagrangian[scale]: Returns the SMEFT or LEFT
Lagrangians at the renormalization scale given in the argument, corresponding to the
current values given by InputValues. If necessary, running and/or matching is per-
formed internally.

Input & Output

• TurnOnMessages and TurnOffMessages: Turn on or off the messages written by the
DsixTools routines.

• NewScale[{list}]: Sets (or resets) the values of the scales indicated in list. For example,
if list = {HIGHSCALE → 5000, LOWSCALE → 5} will set (or reset) ΛUV = 5 TeV and
ΛIR = 5 GeV.

• InputValues: Dispatch10 that contains the current values of the Wilson coefficients
at the input scale. It might refer to the SMEFT or the LEFT, depending on the last
input defined by the user.

• InputBasis: Indicates the SMEFT flavor basis of the input in InputValues. It can
be “up” or “down” (default).

• NewInput[{list},<additional>]: Resets the variable InputValues putting to zero all
d > 4 WCs, and then replaces it by a new one in which the changes in list are applied.

10 For those not familiar with Mathematica dispatch tables, we clarify that these are lists (or tables) of
pointers to replacements rules. In practice they work in exactly the same way as replacement rules, but
their execution time is much lower when the list of replacements is long. It is possible to recover a normal
replacement rule from the dispatch by applying to it the Mathematica command Normal.
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The optional additional entries may also contain changes in the scales HIGHSCALE,
EWSCALE and LOWSCALE, as well as in InputBasis, e.g.,

NewInput[{list},HIGHSCALE->5000,InputBasis->"up"].

• ChangeInput[{list}]: Replaces (without resetting) the current dispatch InputValues
by a new one in which the changes in list are applied. s

• SetSMLEFTInput: Resets the variable InputValues with the LEFT coefficients ob-
tained from a matching to the SM.

• ReadInputFiles[options_file, {WCsInput_file}, {SMInput_file},{EFT}]: Reads
all input files.

• WCXFtoSLHA[WCXF_file,SLHA_file,EFT]: Translates the WCs file in WCxf format
WCXF_file into an SLHA format file named SLHA_file.

• SLHAtoWCXF[SLHA_file,WCXF_file,SCALE,EFT]: Translates the WCs file in SLHA
format SLHA_file into an WCxf format file named WCXF_file.

• AntisymmetryErrorsTotal: List containing the accumulated set of errors fixed by
NewInput, ChangeInput or ReadInputFiles due to input not consistent with flavor-
index symmetries.

• NonHermitianErrorsTotal: List containing the accumulated set of errors fixed by
NewInput, ChangeInput or ReadInputFiles due to input not consistent with her-
miticity of the Lagrangian.

• ReadMME[MME_file]: Reads a file obtained with MatchMakerEFT [54].

Operations with Wilson coefficients

• D6Simplify[expression]: Replaces all redundant Wilson coefficients in expression by
their expressions in terms of the non-redundant ones. It also eliminates complex con-
jugates on real parameters.

• SubRedundant: Dispatch that replaces all redundant Wilson coefficients by their ex-
pressions in terms of the independent ones present in SMEFTParametersList[] and
LEFTParametersList[].

• NIndependent[parameter]: Returns the number of independent real parameters in
parameter: 2 for a general complex parameter, 1 for a real parameter, and 0 for a
redundant WC.
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• ToSymmetric[X,cat]: Returns X in the symmetric basis, where X is an object of
category cat in array form.

• ToSymmetricSingle[parameter]: Returns the form of the SMEFT or LEFT parameter
in the symmetric basis.

• ToIndependent[X,cat]: Returns X in the independent basis, where X is an object of
category cat in array form.

• ToIndependentSingle[parameter]: Returns the form of the SMEFT or LEFT param-
eter in the independent basis.

• CheckAndSymmetrize[X,cat]: Returns X in the symmetric basis, where X is an object
of category cat in array form, after checking that all hermiticity and antisymmetry
conditions are respected. If any of the conditions are violated, some entries of X are
modified.

Matching at the UV scale

• MatchAnalyticalUV: Dispatch that replaces all SMEFT parameters by their analytical
matching conditions at the UV matching scale.

SMEFT and LEFT running

• RGEsMethod: Indicates the method that DsixTools is going to use to solve the RGEs.
It is either 1 (exact numerical solution), 2 (first leading log) or 3 (via the evolution
matrix formalism). This variable is protected.

• SetRGEsMethod[n]: Sets the value of RGEsMethod to n = 1, 2 or 3.

• SMEFTLoopOrder: Indicates the order that DsixTools is going to use for the SM beta
functions when running in the SMEFT. The maximum (and default) in DsixTools 2.0

is SMEFTLoopOrder = 5. This variable is protected.

• LEFTLoopOrder: Indicates the order in QCD that DsixTools is going to use for the
strong coupling beta function and quark-mass anomalous dimensions when running in
the LEFT. The maximum (and default) in DsixTools 2.0 is LEFTLoopOrder = 4. This
variable is protected.

• SetSMEFTLoopOrder[n] and SetLEFTLoopOrder[n]: Set the values of SMEFTLoopOrder
and LEFTLoopOrder
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• UseRGEsSM: If UseRGEsSM = 1, DsixTools will use the pure SM RGEs to run the SM
parameters to the initial scale HIGHSCALE.

• β[parameter]: Gives the beta function of the SMEFT or LEFT parameter.

• βSM[parameter]: Gives the SM beta function of the SM parameter.

• SMEFTRunRGEs and LEFTRunRGEs: Solve the SMEFT and LEFT RGEs in each case.

• D6run[parameter,<"log10">]: Gives the SMEFT or LEFT parameter as a function
of the renormalization scale µ. Including the optional argument "log10" gives the
function in terms of t = log10(µ/ GeV).

• SMEFTEvolve[WC,final,initial,<"log10">]: Returns the SMEFT WC at µ = final in
terms of the SMEFT parameters at µ = initial using the evolution matrix method.

• LEFTEvolve[WC,final,initial,<"log10">]: Returns the LEFT WC at µ = final in
terms of the LEFT parameters at µ = initial using the evolution matrix method.

• SMEFTrunnerExport[<format>,<name>]: Exports the numerical values of the SMEFT
parameters at the scale ΛEW = EWSCALE (after running). If no argument is given,
SMEFTrunnerExport generates a default output file named Output_SMEFTrunner.dat.
This routine can also export the output to file with a name (without extension) and
format chosen by the user (both arguments are required). The available formats are
"SLHA" (default DsixTools format), "JSON" and "YAML".

• LEFTrunnerExport[<format>,<name>]: Exports the numerical values of the LEFT
parameters at the scale ΛIR = LOWSCALE (after running). If no argument is given,
LEFTrunnerExport generates a default output file named Output_LEFTrunner.dat.
This routine can also export the output to file with a name (without extension) and
format chosen by the user (both arguments are required). The available formats are
"SLHA" (default DsixTools format), "JSON" and "YAML".

Matching at the EW scale

• MatchingLoopOrder: Indicates if the SMEFT-LEFT matching will be done at tree-
level (MatchingLoopOrder = 0) or at one-loop (MatchingLoopOrder = 1). This vari-
able is protected.

• chingLoopOrder[n]: Sets the value of MatchingLoopOrder to n.

• Match: Dispatch that replaces all LEFT parameters by their numerical values at the
matching scale, obtained after matching to the SMEFT.
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• MatchEW[parameter]: Returns the matching condition of the LEFT parameter in terms
of SMEFT parameters at the EW scale, in analytical form.

• MatchAnalytical: Dispatch that replaces all LEFT parameters by their analytical
matching conditions, in terms of SMEFT parameters.

• SMEFTLEFTMatch: Perfoms the matching between the SMEFT and the LEFT, at the
order specified by MatchingLoopOrder.

• SMEFTRotateParameters[scale]: Returns a list containing two dispatches that trans-
form the SMEFT parameters to the “up” and “down” bases at µ = scale.

• SMEFTToNewBasis[basis,scale]: Dispatch that transforms the SMEFT parameters to
a specific flavor basis (“up” or “down”) at µ = scale.

• LEFTToNewBasis[scale]: Dispatch that transforms the LEFT parameters to the mass
basis at µ = scale.

• EWmatcherExport[<format>,<name>]: Exports the numerical values of the LEFT pa-
rameters at the scale ΛEW obtained after matching to the SMEFT. If no argument is
given, EWmatcherExport generates a default output file named Output_EWmatcher.dat.
This routine can also export the output to file with a name (without extension) and
format chosen by the user (both arguments are required). The available formats are
"SLHA" (default DsixTools format), "JSON" and "YAML".

Other variables and routines

• Diagonalize[matrix]: Brings the square matrix matrix to diagonal form by applying
a biunitary transformation or a Takagi factorization.

• Biunitary[matrix]: Applies a biunitary transformation diagonalizing the square ma-
trix, and provides the rotation matrices and the eigenvalues.

• Takagi[matrix]: Applies a Takagi factorization to the square symmetric matrix ma-
trix, and provides the rotation matrix and the eigenvalues.

• LoopParameter: Appears in analytical expressions such as beta functions and match-
ing conditions, separating different loop orders. An n-loop term is proportional to
(LoopParameter)n (except for n = 1 in the beta functions). This variable is protected.

• SumRepeated[X]: Applies Einstein summation convention to the analytical expression
X by summing over repeated indices.
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5 Summary

DsixTools is a Mathematica package for simbolic and numerical operations within the
SMEFT and the LEFT, facilitating the treatment of these two effective theories in a sys-
tematic and complete manner.

Here we have presented DsixTools 2.0, a new and improved version of DsixTools. This
version features the complete one-loop evolution from a high-energy scale ΛUV > ΛEW (where
the physics is described by the SMEFT) down to a low-energy scale ΛIR < ΛEW (where the
physics is described by the LEFT). This includes complete one-loop RGE evolution and
complete one-loop matching at the EW scale. In addition, the new version contains a
large number of improvements regarding notation and utilities, operational efficiency and
simplicity, user interface, input and output, a set of reference tools for the SMEFT and the
LEFT, and a complete Mathematica documentation system.

DsixTools is a project that can be extended with future improvements, including addi-
tional tools and functionalities. The final outcome of this endeavour will be a complete and
powerful framework for the systematic exploration of new physics models using the language
of Effective Field Theories.
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A Standard Model Effective Field Theory

The SMEFT is the EFT obtained after extending the SM Lagrangian with all operators
invariant under the SU(3)c × SU(2)L × U(1)Y gauge group up to an arbitrary dimension.
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The Lagrangian for the SMEFT can be written as

LSMEFT = LSM +
∑
k

C
(5)
k Q

(5)
k +

∑
k

C
(6)
k Q

(6)
k +O

(
1

Λ3
UV

)
. (A.1)

The dimensionful Wilson coefficients C(5)
k and C(6)

k are implicitly suppressed by 1/ΛUV and
1/Λ2

UV, respectively, where ΛUV is the EFT cutoff scale, assumed to be much larger than
the electroweak scale. The implementation of the SMEFT in DsixTools mainly follows the
conventions used in Ref. [3].11 The SM Lagrangian is given by

LSM = −1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (Dµϕ)† (Dµϕ) +m2ϕ†ϕ− λ

2

(
ϕ†ϕ

)2
+ i
(
¯̀/D`+ ē /De+ q̄ /Dq + ū /Du+ d̄ /Dd

)
−
(
¯̀Γeeϕ+ q̄Γuuϕ̃+ q̄Γddϕ+ h.c.

)
+ Lθ . (A.2)

Here GA
µν (A = 1 . . . 8), W I

µν (I = 1 . . . 3) and Bµν denote, respectively, the SU(3)c, SU(2)L
and U(1)Y field-strength tensors. The fields ` and q correspond to the lepton and quark
SU(2)L doublets of the SM, while e, u, d are the SM right-handed fields. The Higgs SU(2)L
doublet is denoted by ϕ. The Yukawa couplings Γe,u,d are 3×3 matrices in flavor space. Using
appropriate field redefinitions, and without loss of generality, one can choose a particular
flavor basis where Γe and Γd are diagonal and Γu = V †CKM Γ̂u, with Γ̂u diagonal and VCKM

denoting the CKM matrix. This is the so-called down basis, and it is the default basis choice
for DsixTools. Another basis choice that is also useful is the up basis, where Γe and Γu are
diagonal and Γd = VCKM Γ̂d with Γ̂d diagonal. Note, however, that these bases are not stable
under RGE evolution. The covariant derivative is defined as

Dµ = ∂µ + igsT
AGA

µ + igT IW I
µ + ig′Y Bµ , (A.3)

where {gs, g, g′} and {G,W,B} are, respectively, the SU(3)c, SU(2)L and U(1)Y gauge
couplings and gauge fields, and TA and T I are the corresponding gauge group generators
in the appropriate representations. The hypercharge assignments for the matter fields are
given in Table 2. The θ terms are given by

Lθ =
θ′g′2

32π2
B̃µνB

µν +
θg2

32π2
W̃ I
µνW

µν
I +

θsg
2
s

32π2
G̃A
µνG

µν
A , (A.4)

with the dual tensors defined as X̃ = 1
2
εµνρσX

ρσ (with ε0123 = +1). There is only one
operator of dimension five, the so-called Weinberg operator,

Q``ϕϕ =
(
ϕ̃†`
)T
C
(
ϕ̃†`
)
, (A.5)

11 The reader should keep in mind that these conventions differ from those used in [4–6]. The differences
appear in the normalization of λ and m, the definition of the Yukawa matrices and the name of the gauge
couplings. However, DsixTools 2.0 adopts the convention of [4–6] of introducing the EFT cutoff scale into
the definition of the WCs.
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Table 2: Hypercharge assignments in the SMEFT.

Field `L eR qL uR dR ϕ

Y −1
2
−1 1

6
2
3
−1

3
1
2

with C denoting the Dirac charge conjugation matrix. This operator gives a Majorana mass
term for the neutrinos after spontaneous symmetry breaking [58]. A non-redundant basis of
dimension-six operators was defined in [3], the so called Warsaw basis. Table 3 classifies the
SMEFT operators in the Warsaw basis indicating the number of independent operators in
each category. We list the Baryon-number-conserving operators in Tables 4, 5 and 6. Barring
flavor structure, these constitute a total of 59 operators, some of which are non-Hermitian,
yielding in total 76 real coefficients. Taking into account flavor indices, the Baryon-number-
conserving dimension-six Lagrangian contains 1350 CP-even and 1149 CP-odd operators,
for a total of 2499 Hermitian operators [6]. The complete set of independent dimension-six
Baryon number violating operators were identified in [59]. Barring flavor structure, there
are only 4 Baryon-number-violating operators. These are listed in Table 7.

The beta functions for the SMEFT WCs Ci are defined as

dCi
d log µ

≡ 1

16π2
βi . (A.6)

Here µ is the renormalization scale, and βi are the individual beta functions of each WC. The
complete set of one-loop beta functions for the SM and dimension-six WCs were computed in
[4–7]. The beta functions in these references neglect the contributions to the running of the
dimension-six WCs from two insertions of the dimension-five Weinberg operator. Given the
smallness of neutrino masses, it is natural to expect that the scale suppressing this operator
is much larger than the one of the dimension-six operators, which justifies having neglected
these contributions. The beta function for the Weinberg operator can be found in [49]. The
complete set of one-loop SMEFT beta functions can be read off directly from DsixTools
with the command β[parameter].

B Low-Energy Effective Field Theory

The LEFT is the EFT below the electroweak scale after integrating out the Higgs boson,
the massive W± and Z gauge bosons and the top quark from the SM particle content,
as well as any BSM degrees of freedom at or above the EW scale. The resulting theory is
invariant under the SU(3)c×U(1)Q gauge group and contains nu = 2 up-type quarks, nd = 3

down-type quarks, ne = 3 charged leptons and nν = 3 left-handed neutrinos. The LEFT
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Table 3: SMEFT operators in the Warsaw basis. The third column lists the number of
operators in the category whereas the last column indicates whether they violate baryon (B)
or lepton (L) numbers.

dim class # operators quantum numbers

5 Dimension-five 1 ∆L = 2

6 X3 4

6 ϕ6 1

6 ϕ4D2 2

6 X2ϕ2 8

6 ψ2ϕ3 3

6 ψ2Xϕ 8

6 ψ2ϕ2D 8

6
(
L̄L
) (
L̄L
)

5

6
(
R̄R
) (
R̄R
)

7

6
(
L̄L
) (
R̄R
)

8

6
(
L̄R
) (
L̄R
)

4

6
(
L̄R
) (
R̄L
)

1

6 Baryon-number-violating 4 ∆B = ∆L = 1
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Table 4: SMEFT purely bosonic operators.

X3 X2ϕ2

QG fABCGAν
µ GBρ

ν GCµ
ρ QϕG ϕ†ϕGA

µνG
Aµν

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ QϕB ϕ†ϕBµνB

µν

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕW ϕ†ϕW I

µνW
Iµν

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ QϕWB ϕ†τ IϕW I

µνB
µν

ϕ6 QϕG̃ ϕ†ϕG̃A
µνG

Aµν

Qϕ

(
ϕ†ϕ

)3
QϕB̃ ϕ†ϕB̃µνB

µν

ϕ4D2 QϕW̃ ϕ†ϕW̃ I
µνW

Iµν

Qϕ�

(
ϕ†ϕ

)
�
(
ϕ†ϕ

)
QϕW̃B ϕ†τ IϕW̃ I

µνB
µν

QϕD

(
ϕ†Dµϕ

)∗ (
ϕ†Dµϕ

)

Table 5: SMEFT mixed operators involving bosons and fermions.

ψ2ϕ3 ψ2ϕ2D

Quϕ

(
ϕ†ϕ

)
(q̄uϕ̃) Q

(1)
ϕ`

(
ϕ†i
↔
Dµϕ

) (
¯̀γµ`

)
Qdϕ

(
ϕ†ϕ

)
(q̄dϕ) Q

(3)
ϕ`

(
ϕ†i
↔
Dµ

Iϕ
) (

¯̀τ Iγµ`
)

Qeϕ

(
ϕ†ϕ

) (
¯̀eϕ
)

Qϕe

(
ϕ†i
↔
Dµϕ

)
(ēγµe)

ψ2Xϕ Q
(1)
ϕq

(
ϕ†i
↔
Dµϕ

)
(q̄γµq)

QeW

(
¯̀σµνe

)
τ IϕW I

µν Q
(3)
ϕq

(
ϕ†i
↔
Dµ

Iϕ
) (
q̄τ Iγµq

)
QeB

(
¯̀σµνe

)
ϕBµν Qϕu

(
ϕ†i
↔
Dµϕ

)
(ūγµu)

QuG

(
q̄σµνTAu

)
ϕ̃GA

µν Qϕd

(
ϕ†i
↔
Dµϕ

) (
d̄γµd

)
QuW (q̄σµνu) τ Iϕ̃W I

µν Qϕud

(
ϕ̃†iDµϕ

)
(ūγµd)

QuB (q̄σµνu) ϕ̃Bµν

QdG

(
q̄σµνTAd

)
ϕGA

µν

QdW (q̄σµνd) τ IϕW I
µν

QdB (q̄σµνd)ϕBµν
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Table 6: SMEFT purely fermionic operators which preserve Baryon number.(
L̄L
) (
L̄L
) (

L̄L
) (
R̄R
)

Q``

(
¯̀γµ`

) (
¯̀γµ`

)
Q`e

(
¯̀γµ`

)
(ēγµe)

Q
(1)
qq (q̄γµq) (q̄γµq) Q`u

(
¯̀γµ`

)
(ūγµu)

Q
(3)
qq

(
q̄γµτ

Iq
) (
q̄γµτ Iq

)
Q`d

(
¯̀γµ`

) (
d̄γµd

)
Q

(1)
`q

(
¯̀γµ`

)
(q̄γµq) Qqe (q̄γµq) (ēγµe)

Q
(3)
`q

(
¯̀γµτ

I`
) (
q̄γµτ Iq

)
Q

(1)
qu (q̄γµq) (ūγµu)(

R̄R
) (
R̄R
)

Q
(8)
qu

(
q̄γµT

Aq
) (
ūγµTAu

)
Qee (ēγµe) (ēγµe) Q

(1)
qd (q̄γµq)

(
d̄γµd

)
Quu (ūγµu) (ūγµu) Q

(8)
qd

(
q̄γµT

Aq
) (
d̄γµTAd

)
Qdd

(
d̄γµd

) (
d̄γµd

) (
L̄R
) (
R̄L
)

Qeu (ēγµe) (ūγµu) Q`edq

(
¯̀je
) (
d̄qj
)

Qed (ēγµe)
(
d̄γµd

) (
L̄R
) (
L̄R
)

Q
(1)
ud (ūγµu)

(
d̄γµd

)
Q

(1)
quqd (q̄ju) εjk

(
q̄kd
)

Q
(8)
ud

(
ūγµT

Au
) (
d̄γµTAd

)
Q

(8)
quqd

(
q̄jTAu

)
εjk
(
q̄kTAd

)
Q

(1)
`equ

(
¯̀je
)
εjk
(
q̄ku
)

Q
(3)
`equ

(
¯̀jσµνe

)
εjk
(
q̄kσµνu

)

Table 7: SMEFT Baryon-number-violating operators.

Baryon-number-violating

Qduq`

(
dTCu

) (
qTC`

)
Qqque

(
qTCq

) (
uTCe

)
Qqqq` εilεjk

(
qTi Cqj

) (
qTk C`l

)
Qduue

(
dTCu

) (
uTCe

)
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Lagrangian is given by

LLEFT = LQCD+QED +
∑
k

L
(3)
k O

(3)
k +

∑
k

L
(5)
k O

(5)
k +

∑
k

L
(6)
k O

(6)
k +O

(
1

Λ3
EW

)
. (B.1)

The dimensionful Wilson coefficients L(5)
k and L

(6)
k are implicitly suppressed by 1/ΛEW

and 1/Λ2
EW, respectively, where ΛEW is the electroweak scale. A non-redundant basis of

dimension-three, -five and -six operators was introduced in [2], and this will be known in the
following as the San Diego basis. Table 8 classifies the LEFT operators in the San Diego
basis indicating the number of independent operators in each category. Barring flavor struc-
ture and Hermitian conjugation there are 96 independent operators. It can be shown that no
linear combination of these operators vanish after the application of the equations of motion,
which makes them completely independent operators. We list these operators in Tables 9
- 13, omitting flavor (and SU(3)c indices in the last tables) to simplify the notation. The
only operator present at dimension 3 is a Majorana mass term for the left-handed neutrinos,
shown in Table 9. There are two categories of dimension-five operators, (νν)X and

(
L̄R
)
X,

both listed in Table 10. While the former violates Lepton number in two units, the latter pre-
serves both lepton and Baryon numbers. All the dimension-five LEFT operators are dipole
operators. The remaining 89 independent operators arise at dimension 6. There are 2 purely
gluonic operators, shown in Table 11, 56 4-fermion operators that conserve both Baryon and
Lepton numbers, shown in Table 12, and 31 4-fermion operators that violate Baryon and/or
Lepton numbers, shown in Table 13. Assuming that the SMEFT is the correct theory above
the EW scale, all parameters of the LEFT can be fixed though a matching calculation at the
EW scale. The complete set of matching conditions in the Warsaw and San Diego bases are
known at tree-level [8] and one-loop [9] orders. They can be can be read off directly from
DsixTools with the command MatchEW[parameter].

The implementation of the LEFT in DsixTools follows the same (or analogous) conven-
tions as for the SMEFT. 12 The QCD and QED Lagrangian is given by

LQCD+QED = −1

4
GA
µνG

Aµν − 1

4
FµνF

µν + θQCD
g2s

32π2
G̃A
µνG

µν
A + +θQED

e2

32π2
F̃µνF

µν

+
∑

ψ=u,d,e,νL

ψ i /Dψ −

[ ∑
ψ=u,d,e

ψLMψψR + h.c.

]
. (B.2)

The Dirac mass matrices Mu and Me,d are, respectively, 2 × 2 and 3 × 3 matrices in flavor
space and we will omit flavor indices whenever possible. The absence of a Dirac mass matrix
for the neutrinos is due to the fact that right-handed neutrinos are not included in the LEFT.
The covariant derivative is defined as

Dµ = ∂µ + igsT
AGA

µ + ieQAµ , (B.3)

12The reader should keep in mind that these conventions differ from those used in [2, 8]. The differences
appear in the definition of the fermion mass matrices and the name of the strong gauge coupling.
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where gs and e are the SU(3)c and U(1)Q gauge couplings, respectively, and TA (A = 1 . . . 8)
are the Gell-Mann matrices. The gauge field tensors are defined as usual,

GA
µν = ∂µG

A
ν − ∂νGA

µ − gsfABCGB
µG

C
ν , (B.4)

Fµν = ∂µFν − ∂νFµ , (B.5)

with covariant derivatives

(DρGµν)
A = ∂ρG

A
µν − gsfABCGB

ρ G
C
µν , (B.6)

(DρFµν) = ∂ρFµν . (B.7)

Finally, dual tensors are defined as X̃ = 1
2
εµνρσX

ρσ (with ε0123 = +1).
The RGEs governing the renormalization scale evolution of the LEFT Wilson coefficients

Li are given by
dLi
d log µ

=
1

16π2
βi . (B.8)

which define the LEFT beta functions βi. We use a notation completely analogous to that in
the SMEFT. The complete set of one-loop beta functions for the LEFT has been computed
in Ref. [8]. They can be read off directly from DsixTools with the command β[parameter].

C SMEFT and LEFT parameters

In this Appendix we provide additional details about the variables used in DsixTools. These
can be useful to properly read and write some variables or apply some global dispatches and
substitution rules in a Mathematica session using DsixTools. We also introduce the notation
used in DsixTools for the SMEFT and LEFT parameters.

It is well known that some of the 2- and 4-fermion operators in the SMEFT and the
LEFT possess specific symmetries under the exchange of flavor indices. For instance, the
flavour components of the SMEFT operator Qϕe form a Hermitian matrix, hence follow-
ing the symmetry relation [Qϕe]ij = [Qϕe]

∗
ji, while the LEFT operator components of Oνγ

form an antisymmetric matrix, hence following the symmetry relation [Oνγ]ij = −[Oνγ]ji.
More complicated index symmetries exist for some of the 4-fermion operators. In all these
cases, the number of independent operator components gets reduced, and thus the number
of independent WCs. For example, the Cee 4-fermion WC does not contain 81 (= 34) in-
dependent complex WCs, but just 21 real and 15 imaginary independent components. It
is convenient to restrict the number of parameters considered in SMEFT or LEFT calcula-
tions to just the independent ones. In DsixTools we have followed this approach, dropping
redundant WCs in all internal calculations by transforming the user input into two minimal
bases of operators: the independent basis and the symmetric basis. These bases, which are
described in Appendix C.3, have the same set of independent WCs, although with different
numerical values. Since the number of independent WCs depends on the symmetry of the
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Table 8: LEFT operators in the San Diego basis. The third column lists the number of
operators in the category whereas the last column indicates whether they violate baryon (B)
or lepton (L) numbers.

dim class # operators quantum numbers

3 νν 1 ∆L = 2

5 (νν)X 1 ∆L = 2

5
(
L̄R
)
X 5

6 X3 2

6
(
L̄L
) (
L̄L
)

12

6
(
R̄R
) (
R̄R
)

7

6
(
L̄L
) (
R̄R
)

19

6
(
L̄R
) (
L̄R
)

15

6
(
L̄R
) (
R̄L
)

3

6 ∆L = 4 1 ∆L = 4

6 ∆L = 2 14 ∆L = 2

6 ∆B = ∆L = 1 9 ∆B = ∆L = 1

6 ∆B = −∆L = 1 7 ∆B = −∆L = 1

Table 9: LEFT dimension-three operator.

νν

Oν νTLCνL

37



Table 10: LEFT dimension-five operators.

(νν)X
(
L̄R
)
X

Oνγ
(
νTLCσ

µννL
)
Fµν Oeγ (ēLσ

µνeR)Fµν

Ouγ (ūLσ
µνuR)Fµν

Odγ
(
d̄Lσ

µνdR
)
Fµν

OuG
(
ūLσ

µνTAuR
)
GA
µν

OdG
(
d̄Lσ

µνTAdR
)
GA
µν

Table 11: LEFT purely gluonic operators.

X3

OG fABCGAν
µ GBρ

ν GCµ
ρ

OG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ
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Table 12: LEFT Baryon and Lepton number conserving dimension-six operators.

(
L̄L
) (
L̄L
) (

L̄L
) (
R̄R
) (

L̄R
) (
L̄R
)

OV,LLνν (ν̄LγµνL) (ν̄Lγ
µνL) OV,LRνe (ν̄LγµνL) (ēRγ

µeR) OS,RRee (ēLeR) (ēLeR)

OV,LLee (ēLγµeL) (ēLγ
µeL) OV,LRee (ēLγµeL) (ēRγ

µeR) OS,RReu (ēLeR) (ūLuR)

OV,LLνe (ν̄LγµνL) (ēLγ
µeL) OV,LRνu (ν̄LγµνL) (ūRγ

µuR) OT,RReu (ēLσµνeR) (ūLσ
µνuR)

OV,LLνu (ν̄LγµνL) (ūLγ
µuL) OV,LRνd (ν̄LγµνL)

(
d̄Rγ

µdR
)

OS,RRed (ēLeR)
(
d̄LdR

)
OV,LLνd (ν̄LγµνL)

(
d̄Lγ

µdL
)

OV,LReu (ēLγµeL) (ūRγ
µuR) OT,RRed (ēLσµνeR)

(
d̄Lσ

µνdR
)

OV,LLeu (ēLγµeL) (ūLγ
µuL) OV,LRed (ēLγµeL)

(
d̄Rγ

µdR
)

OS,RRνedu (ν̄LeR)
(
d̄LuR

)
OV,LLed (ēLγµeL)

(
d̄Lγ

µdL
)

OV,LRue (ūLγµuL) (ēRγ
µeR) OT,RRνedu (ν̄LσµνeR)

(
d̄Lσ

µνuR
)

OV,LLνedu (ν̄LγµeL)
(
d̄Lγ

µuL
)

OV,LRde

(
d̄LγµdL

)
(ēRγ

µeR) OS1,RRuu (ūLuR) (ūLuR)

OV,LLuu (ūLγµuL) (ūLγ
µuL) OV,LRνedu (ν̄LγµeL)

(
d̄Rγ

µuR
)

OS8,RRuu

(
ūLT

AuR
) (
ūLT

AuR
)

OV,LLdd

(
d̄LγµdL

) (
d̄Lγ

µdL
)

OV 1,LR
uu (ūLγµuL) (ūRγ

µuR) OS1,RRud (ūLuR)
(
d̄LdR

)
OV 1,LL
ud (ūLγµuL)

(
d̄Lγ

µdL
)

OV 8,LR
uu

(
ūLγµT

AuL
) (
ūRγ

µTAuR
)
OS8,RRud

(
ūLT

AuR
) (
d̄LT

AdR
)

OV 8,LL
ud

(
ūLγµT

AuL
) (
d̄Lγ

µTAdL
)
OV 1,LR
ud (ūLγµuL)

(
d̄Rγ

µdR
)

OS1,RRdd

(
d̄LdR

) (
d̄LdR

)(
R̄R
) (
R̄R
)

OV 8,LR
ud

(
ūLγµT

AuL
) (
d̄Rγ

µTAdR
)
OS8,RRdd

(
d̄LT

AdR
) (
d̄LT

AdR
)

OV,RRee (ēRγµeR) (ēRγ
µeR) OV 1,LR

du

(
d̄LγµdL

)
(ūRγ

µuR) OS1,RRuddu (ūLdR)
(
d̄LuR

)
OV,RReu (ēRγµeR) (ūRγ

µuR) OV 8,LR
du

(
d̄LγµT

AdL
) (
ūRγ

µTAuR
)
OS8,RRuddu

(
ūLT

AdR
) (
d̄LT

AuR
)

OV,RRed (ēRγµeR)
(
d̄Rγ

µdR
)

OV 1,LR
dd

(
d̄LγµdL

) (
d̄Rγ

µdR
) (

L̄R
) (
R̄L
)

OV,RRuu (ūRγµuR) (ūRγ
µuR) OV 8,LR

dd

(
d̄LγµT

AdL
) (
d̄Rγ

µTAdR
)

OS,RLeu (ēLeR) (ūRuL)

OV,RRdd

(
d̄RγµdR

) (
d̄Rγ

µdR
)

OV 1,LR
uddu (ūLγµdL)

(
d̄Rγ

µuR
)

OS,RLed (ēLeR)
(
d̄RdL

)
OV 1,RR
ud (ūRγµuR)

(
d̄Rγ

µdR
)

OV 8,LR
uddu

(
ūLγµT

AdL
) (
d̄Rγ

µTAuR
)
OS,RLνedu (ν̄LeR)

(
d̄RuL

)
OV 8,RR
ud

(
ūRγµT

AuR
) (
d̄Rγ

µTAdR
)
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Table 13: LEFT Baryon and/or Lepton number violating dimension-six operators. We use
C to denote the Dirac charge conjugation matrix.

∆L = 2 ∆B = ∆L = 1 ∆B = −∆L = 1

OS,LLνe

(
νTLCνL

)
(ēReL) OS,LLudd

(
uTLCdL

) (
dTLCνL

)
OS,LLddd

(
dTLCdL

)
(ēRdL)

OT,LLνe

(
νTLCσµννL

)
(ēRσ

µνeL) OS,LLduu

(
dTLCuL

) (
uTLCeL

)
OS,LRudd

(
uTLCdL

)
(ν̄LdR)

OS,LRνe

(
νTLCνL

)
(ēLeR) OS,LRuud

(
uTLCuL

) (
dTRCeR

)
OS,LRddu

(
dTLCdL

)
(ν̄LuR)

OS,LLνu

(
νTLCνL

)
(ūRuL) OS,LRduu

(
dTLCuL

) (
uTRCeR

)
OS,LRddd

(
dTLCdL

)
(ēLdR)

OT,LLνu

(
νTLCσµννL

)
(ūRσ

µνuL) OS,RLuud

(
uTRCuR

) (
dTLCeL

)
OS,RLddd

(
dTRCdR

)
(ēRdL)

OS,LRνu

(
νTLCνL

)
(ūLuR) OS,RLduu

(
dTRCuR

) (
uTLCeL

)
OS,RRudd

(
uTRCdR

)
(ν̄LdR)

OS,LLνd

(
νTLCνL

) (
d̄RdL

)
OS,RLdud

(
dTRCuR

) (
dTLCνL

)
OS,RRddd

(
dTRCdR

)
(ēLdR)

OT,LLνd

(
νTLCσµννL

) (
d̄Rσ

µνdL
)
OS,RLddu

(
dTRCdR

) (
uTLCνL

)
∆L = 4

OS,LRνd

(
νTLCνL

) (
d̄LdR

)
OS,RRduu

(
dTRCuR

) (
uTRCeR

)
OS,LLνν

(
νTLCνL

) (
νTLCνL

)
OS,LLνedu

(
νTLCeL

) (
d̄RuL

)
OT,LLνedu

(
νTLCσµνeL

) (
d̄Rσ

µνuL
)

OS,LRνedu

(
νTLCeL

) (
d̄LuR

)
OV,RLνedu

(
νTLCγµeR

) (
d̄Lγ

µuL
)

OV,RRνedu

(
νTLCγµeR

) (
d̄Rγ

µuR
)
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Table 14: Index symmetry categories used in DsixTools.

Category Meaning

0 0F scalar object

1 2F general 3× 3 matrix

2 2F Hermitian matrix

3 2F symmetric matrix

4 2F antisymmetric matrix

5 4F general 3× 3× 3× 3 object

6 4F two identical ψψ currents

7 4F two independent ψψ currents

8 4F two identical ψψ currents (ψ singlet)

9 4F symmetric current × general current

10 4F antisymmetric current × general current

11 4F SMEFT special case Cqqql

12 4F LEFT special case LS,LLνν

13 4F LEFT special case LS,LL/RRddd
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operators involved, it is sufficient to know the independent WCs for each index symmetry
category of the operators in the SMEFT and LEFT. The different categories are given in
Table 14. We see that, apart from the operators belonging to categories 0, 1 and 5, all other
operators have index symmetries. Furthermore, there are two dimension-six operators with
special symmetries, not shared by any other operator, Qqqql and OS,LLνν , and two operators as
only representatives of the last index symmetry category, OS,LLddd and OS,RRddd . Similarly, the
dimension-five SMEFT operator Q``ϕϕ and the dimension-three LEFT neutrino mass matrix
Mν are the only symmetric matrices, while the dimension-five LEFT operator Oνγ is the
only antisymmetric matrix.

In Tables 15 and 16 we list the independent WCs contained in each category. This,
combined with Tables 17 and 18, completely allows the user to determine the position of a
given parameter in the SMEFTParameterList and LEFTParameterList arrays. In any case,
we remind the reader that the functions SMEFTFindParameter and LEFTFindParameter can
also be used for this purpose.

Table 15: Independent WCs in each 2F category. Numbers between curly brackets refer to the WC
flavour indices. Elements in red denote real WCs. Columns refer to symmetry categories, while
rows just count WCs.

1 2 3 4
1 {1,1} {1,1} {1,1} {1,2}
2 {1,2} {1,2} {1,2} {1,3}
3 {1,3} {1,3} {1,3} {2,3}
4 {2,1} {2,2} {2,2}
5 {2,2} {2,3} {2,3}
6 {2,3} {3,3} {3,3}
7 {3,1}
8 {3,2}
9 {3,3}
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Table 16: Independent WCs in each 4F category. Same notation as in Table 15.

5 6 7 8 9 10 11 12 13
1 {1,1,1,1} {1,1,1,1} {1,1,1,1} {1,1,1,1} {1,1,1,1} {1,2,1,1} {1,1,1,1} {1,1,2,2} {1,2,1,1}
2 {1,1,1,2} {1,1,1,2} {1,1,1,2} {1,1,1,2} {1,1,1,2} {1,2,1,2} {1,1,1,2} {1,1,3,3} {1,2,1,2}
3 {1,1,1,3} {1,1,1,3} {1,1,1,3} {1,1,1,3} {1,1,1,3} {1,2,1,3} {1,1,1,3} {2,2,3,3} {1,2,1,3}
4 {1,1,2,1} {1,1,2,2} {1,1,2,2} {1,1,2,2} {1,1,2,1} {1,2,2,1} {1,1,2,1} {1,1,2,3} {1,2,2,1}
5 {1,1,2,2} {1,1,2,3} {1,1,2,3} {1,1,2,3} {1,1,2,2} {1,2,2,2} {1,1,2,2} {1,2,2,3} {1,2,2,2}
6 {1,1,2,3} {1,1,3,3} {1,1,3,3} {1,1,3,3} {1,1,2,3} {1,2,2,3} {1,1,2,3} {1,2,3,3} {1,2,2,3}
7 {1,1,3,1} {1,2,1,2} {1,2,1,1} {1,2,1,2} {1,1,3,1} {1,2,3,1} {1,1,3,1} {1,2,3,1}
8 {1,1,3,2} {1,2,1,3} {1,2,1,2} {1,2,1,3} {1,1,3,2} {1,2,3,2} {1,1,3,2} {1,2,3,2}
9 {1,1,3,3} {1,2,2,1} {1,2,1,3} {1,2,2,2} {1,1,3,3} {1,2,3,3} {1,1,3,3} {1,2,3,3}
10 {1,2,1,1} {1,2,2,2} {1,2,2,1} {1,2,2,3} {1,2,1,1} {1,3,1,1} {1,2,1,1} {1,3,1,1}
11 {1,2,1,2} {1,2,2,3} {1,2,2,2} {1,2,3,2} {1,2,1,2} {1,3,1,2} {1,2,1,2} {1,3,1,2}
12 {1,2,1,3} {1,2,3,1} {1,2,2,3} {1,2,3,3} {1,2,1,3} {1,3,1,3} {1,2,1,3} {1,3,1,3}
13 {1,2,2,1} {1,2,3,2} {1,2,3,1} {1,3,1,3} {1,2,2,1} {1,3,2,1} {1,2,2,1} {1,3,2,1}
14 {1,2,2,2} {1,2,3,3} {1,2,3,2} {1,3,2,3} {1,2,2,2} {1,3,2,2} {1,2,2,2} {1,3,2,2}
15 {1,2,2,3} {1,3,1,3} {1,2,3,3} {1,3,3,3} {1,2,2,3} {1,3,2,3} {1,2,2,3} {1,3,2,3}
16 {1,2,3,1} {1,3,2,2} {1,3,1,1} {2,2,2,2} {1,2,3,1} {1,3,3,1} {1,2,3,1} {1,3,3,1}
17 {1,2,3,2} {1,3,2,3} {1,3,1,2} {2,2,2,3} {1,2,3,2} {1,3,3,2} {1,2,3,2} {1,3,3,2}
18 {1,2,3,3} {1,3,3,1} {1,3,1,3} {2,2,3,3} {1,2,3,3} {1,3,3,3} {1,2,3,3} {1,3,3,3}
19 {1,3,1,1} {1,3,3,2} {1,3,2,1} {2,3,2,3} {1,3,1,1} {2,3,1,1} {1,3,1,1} {2,3,1,2}
20 {1,3,1,2} {1,3,3,3} {1,3,2,2} {2,3,3,3} {1,3,1,2} {2,3,1,2} {1,3,1,2} {2,3,1,3}
21 {1,3,1,3} {2,2,2,2} {1,3,2,3} {3,3,3,3} {1,3,1,3} {2,3,1,3} {1,3,1,3} {2,3,2,2}
22 {1,3,2,1} {2,2,2,3} {1,3,3,1} {1,3,2,1} {2,3,2,1} {1,3,2,1} {2,3,2,3}
23 {1,3,2,2} {2,2,3,3} {1,3,3,2} {1,3,2,2} {2,3,2,2} {1,3,2,2} {2,3,3,2}
24 {1,3,2,3} {2,3,2,3} {1,3,3,3} {1,3,2,3} {2,3,2,3} {1,3,2,3} {2,3,3,3}
25 {1,3,3,1} {2,3,3,2} {2,2,1,1} {1,3,3,1} {2,3,3,1} {1,3,3,1}
26 {1,3,3,2} {2,3,3,3} {2,2,1,2} {1,3,3,2} {2,3,3,2} {1,3,3,2}
27 {1,3,3,3} {3,3,3,3} {2,2,1,3} {1,3,3,3} {2,3,3,3} {1,3,3,3}
28 {2,1,1,1} {2,2,2,2} {2,2,1,1} {2,1,2,1}
29 {2,1,1,2} {2,2,2,3} {2,2,1,2} {2,1,2,2}
30 {2,1,1,3} {2,2,3,3} {2,2,1,3} {2,1,2,3}
31 {2,1,2,1} {2,3,1,1} {2,2,2,1} {2,1,3,1}
32 {2,1,2,2} {2,3,1,2} {2,2,2,2} {2,1,3,2}
33 {2,1,2,3} {2,3,1,3} {2,2,2,3} {2,1,3,3}
34 {2,1,3,1} {2,3,2,1} {2,2,3,1} {2,2,2,1}
35 {2,1,3,2} {2,3,2,2} {2,2,3,2} {2,2,2,2}
36 {2,1,3,3} {2,3,2,3} {2,2,3,3} {2,2,2,3}
37 {2,2,1,1} {2,3,3,1} {2,3,1,1} {2,2,3,1}
38 {2,2,1,2} {2,3,3,2} {2,3,1,2} {2,2,3,2}
39 {2,2,1,3} {2,3,3,3} {2,3,1,3} {2,2,3,3}
40 {2,2,2,1} {3,3,1,1} {2,3,2,1} {2,3,1,1}
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41 {2,2,2,2} {3,3,1,2} {2,3,2,2} {2,3,1,2}
42 {2,2,2,3} {3,3,1,3} {2,3,2,3} {2,3,1,3}
43 {2,2,3,1} {3,3,2,2} {2,3,3,1} {2,3,2,1}
44 {2,2,3,2} {3,3,2,3} {2,3,3,2} {2,3,2,2}
45 {2,2,3,3} {3,3,3,3} {2,3,3,3} {2,3,2,3}
46 {2,3,1,1} {3,3,1,1} {2,3,3,1}
47 {2,3,1,2} {3,3,1,2} {2,3,3,2}
48 {2,3,1,3} {3,3,1,3} {2,3,3,3}
49 {2,3,2,1} {3,3,2,1} {3,1,3,1}
50 {2,3,2,2} {3,3,2,2} {3,1,3,2}
51 {2,3,2,3} {3,3,2,3} {3,1,3,3}
52 {2,3,3,1} {3,3,3,1} {3,2,3,1}
53 {2,3,3,2} {3,3,3,2} {3,2,3,2}
54 {2,3,3,3} {3,3,3,3} {3,2,3,3}
55 {3,1,1,1} {3,3,3,1}
56 {3,1,1,2} {3,3,3,2}
57 {3,1,1,3} {3,3,3,3}
58 {3,1,2,1}
59 {3,1,2,2}
60 {3,1,2,3}
61 {3,1,3,1}
62 {3,1,3,2}
63 {3,1,3,3}
64 {3,2,1,1}
65 {3,2,1,2}
66 {3,2,1,3}
67 {3,2,2,1}
68 {3,2,2,2}
69 {3,2,2,3}
70 {3,2,3,1}
71 {3,2,3,2}
72 {3,2,3,3}
73 {3,3,1,1}
74 {3,3,1,2}
75 {3,3,1,3}
76 {3,3,2,1}
77 {3,3,2,2}
78 {3,3,2,3}
79 {3,3,3,1}
80 {3,3,3,2}
81 {3,3,3,3}
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C.1 SMEFT parameters

Table 17 provides a complete list of the SMEFT parameters used in DsixTools. In addition
to the SMEFT WCs, this includes the SM parameters (gauge couplings, Yukawa matrices
and scalar and θ parameters). This table is particularly useful to identify the names given
to the elements of 2- and 4-fermion WCs, as well as the corresponding beta functions, which
can be readily obtained by evaluating β[parameter]. For instance, the beta function for the
gs gauge coupling is obtained by evaluating β[gs] and the beta function for the [C

(1)
`q ]2233

WC is obtained with β[Clq1[2,2,3,3]].

Table 17: SMEFT parameters. Position denotes the position of the parameter (or parameters for
2- and 4-fermion objects) in the SMEFTParametersTotal global array. Type indicates the type of
parameter (with nF standing for n-fermion) and Category denotes the index symmetry category of
the coefficient, being relevant for 2- and 4-fermion WCs.

Position Parameter(s) DsixTools name Elements Type Category
1 g g - 0F 0
2 g′ gp - 0F 0
3 gs gs - 0F 0
4 λ λ - 0F 0
5 m2 m2 - 0F 0

6-14 Γu MGu Gu[i,j] 2F 1
15-23 Γd MGd Gd[i,j] 2F 1
24-32 Γe MGe Ge[i,j] 2F 1
33 θ θ - 0F 0
34 θ′ θp - 0F 0
35 θs θs - 0F 0
36 CG CG - 0F 0
37 C

G̃
CGtilde - 0F 0

38 CW CW - 0F 0
39 C

W̃
CWtilde - 0F 0

40 Cϕ CH - 0F 0
41 Cϕ� CHbox - 0F 0
42 CϕD CHD - 0F 0
43 CϕG CHG - 0F 0
44 CϕB CHB - 0F 0
45 CϕW CHW - 0F 0
46 CϕWB CHWB - 0F 0
47 C

ϕG̃
CHGtilde - 0F 0

48 C
ϕB̃

CHBtilde - 0F 0
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49 C
ϕW̃

CHWtilde - 0F 0
50 C

ϕW̃B
CHWtildeB - 0F 0

51-59 Cuϕ MCuH CuH[i,j] 2F 1
60-68 Cdϕ MCdH CdH[i,j] 2F 1
69-77 Ceϕ MCeH CeH[i,j] 2F 1
78-86 CeW MCeW CeW[i,j] 2F 1
87-95 CeB MCeB CeB[i,j] 2F 1
96-104 CuG MCuG CuG[i,j] 2F 1
105-113 CuW MCuW CuW[i,j] 2F 1
114-122 CuB MCuB CuB[i,j] 2F 1
123-131 CdG MCdG CdG[i,j] 2F 1
132-140 CdW MCdW CdW[i,j] 2F 1
141-149 CdB MCdB CdB[i,j] 2F 1
150-155 C

(1)
ϕ` MCHl1 CHl1[i,j] 2F 2

156-161 C
(3)
ϕ` MCHl3 CHl3[i,j] 2F 2

162-167 Cϕe MCHe CHe[i,j] 2F 2
168-173 C

(1)
ϕq MCHq1 CHq1[i,j] 2F 2

174-179 C
(3)
ϕq MCHq3 CHq3[i,j] 2F 2

180-185 Cϕu MCHu CHu[i,j] 2F 2
186-191 Cϕd MCHd] CHd[i,j] 2F 2
192-200 Cϕud MCHud CHud[i,j] 2F 1
201-227 C`` MCll Cll[i,j,k,l] 4F 6
228-254 C

(1)
qq MCqq1 Cqq1[i,j,k,l] 4F 6

255-281 C
(3)
qq MCqq3 Cqq3[i,j,k,l] 4F 6

282-326 C
(1)
`q MClq1 Clq1[i,j,k,l] 4F 7

327-371 C
(3)
`q MClq3 Clq3[i,j,k,l] 4F 7

372-392 Cee MCee Cee[i,j,k,l] 4F 8
393-419 Cuu MCuu Cuu[i,j,k,l] 4F 6
420-446 Cdd MCdd Cdd[i,j,k,l] 4F 6
447-491 Ceu MCeu Ceu[i,j,k,l] 4F 7
492-536 Ced MCed Ced[i,j,k,l] 4F 7
537-581 C

(1)
ud MCud1 Cud1[i,j,k,l] 4F 7

582-626 C
(8)
ud MCud8 Cud8[i,j,k,l] 4F 7

627-671 C`e MCle Cle[i,j,k,l] 4F 7
672-716 C`u MClu Clu[i,j,k,l] 4F 7
717-761 C`d MCld Cld[i,j,k,l] 4F 7
762-806 Cqe MCqe Cqe[i,j,k,l] 4F 7
807-851 C

(1)
qu MCqu1 Cqu1[i,j,k,l] 4F 7

852-896 C
(8)
qu MCqu8 Cqu8[i,j,k,l] 4F 7

46



897-941 C
(1)
qd MCqd1 Cqd1[i,j,k,l] 4F 7

942-986 C
(8)
qd MCqd8 Cqd8[i,j,k,l] 4F 7

987-1067 C`edq MCledq Cledq[i,j,k,l] 4F 5
1068-1148 C

(1)
quqd MCquqd1 Cquqd1[i,j,k,l] 4F 5

1149-1229 C
(8)
quqd MCquqd8 Cquqd8[i,j,k,l] 4F 5

1230-1310 C
(1)
`equ MClequ1 Clequ1[i,j,k,l] 4F 5

1311-1391 C
(3)
`equ MClequ3 Clequ3[i,j,k,l] 4F 5

1392-1472 Cduq` MCduql Cduql[i,j,k,l] 4F 5
1473-1526 Cqque MCqque Cqque[i,j,k,l] 4F 9
1527-1583 Cqqq` MCqqql Cqqql[i,j,k,l] 4F 11
1584-1664 Cduue MCduue Cduue[i,j,k,l] 4F 5
1665-1670 C``ϕϕ MCllHH CllHH[i,j] 2F 3

C.2 LEFT parameters

Table 18 provides a complete list of the LEFT parameters used in DsixTools. In addition
to the LEFT WCs, this includes the QCD and QED parameters (gauge couplings, fermion
mass matrices and θ parameters). This table is particularly useful to identify the names
given to the elements of 2- and 4-fermion WCs, as well as the corresponding beta functions,
which can be readily obtained by evaluating β[parameter]. For instance, the beta function
for the e gauge coupling is obtained by evaluating β[eQED] and the beta function for the
[LdG]22 WC is obtained with β[LdG[2,2]].

Table 18: LEFT parameters. Position denotes the position of the parameter (or parameters for
2- and 4-fermion objects) in the LEFTParametersTotal global array. Type indicates the type of
parameter (with nF standing for n-fermion) and Category denotes the index symmetry category of
the coefficient, being relevant for 2- and 4-fermion WCs.

Position Parameter(s) DsixTools name Elements Type Category
1 gs gQCD - 0F 0
2 e eQED - 0F 0
3 θQCD θQCD - 0F 0
4 θQED θQED - 0F 0

5-10 Mν MMν Mν[i,j] 2F 3
11-19 Me MMe Me[i,j] 2F 1
20-28 Mu MMu Mu[i,j] 2F 1
29-37 Md MMd Md[i,j] 2F 1
38 LG LG - 0F 0
39 L

G̃
LGtilde - 0F 0
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40-42 Lνγ MLνγ Lνγ[i,j] 2F 4
43-51 Leγ MLeγ Leγ[i,j] 2F 1
52-60 Luγ MLuγ Luγ[i,j] 2F 1
61-69 Ldγ MLdγ Ldγ[i,j] 2F 1
70-78 LuG MLuG LuG[i,j] 2F 1
79-87 LdG MLdG LdG[i,j] 2F 1
88-108 LV,LLνν MLννVLL LννVLL[i,j,k,l] 4F 8
109-129 LV,LLee MLeeVLL LeeVLL[i,j,k,l] 4F 8
130-210 LV,LLνe MLνeVLL LνeVLL[i,j,k,l] 4F 5
211-291 LV,LLνu MLνuVLL LνuVLL[i,j,k,l] 4F 5
292-372 LV,LLνd MLνdVLL LνdVLL[i,j,k,l] 4F 5
373-453 LV,LLeu MLeuVLL LeuVLL[i,j,k,l] 4F 5
454-534 LV,LLed MLedVLL LedVLL[i,j,k,l] 4F 5
535-615 LV,LLνedu MLνeduVLL LνeduVLL[i,j,k,l] 4F 5
616-642 LV,LLuu MLuuVLL LuuVLL[i,j,k,l] 4F 6
643-669 LV,LLdd MLddVLL LddVLL[i,j,k,l] 4F 6
670-750 LV 1,LL

ud MLudV1LL LudV1LL[i,j,k,l] 4F 5
751-831 LV 8,LL

ud MLudV8LL LudV8LL[i,j,k,l] 4F 5
832-852 LV,RRee MLeeVRR LeeVRR[i,j,k,l] 4F 8
853-933 LV,RReu MLeuVRR LeuVRR[i,j,k,l] 4F 5
934-1014 LV,RRed MLedVRR LedVRR[i,j,k,l] 4F 5
1015-1041 LV,RRuu MLuuVRR LuuVRR[i,j,k,l] 4F 6
1042-1068 LV,RRdd MLddVRR LddVRR[i,j,k,l] 4F 6
1069-1149 LV 1,RR

ud MLudV1RR LudV1RR[i,j,k,l] 4F 5
1150-1230 LV 8,RR

ud MLudV8RR LudV8RR[i,j,k,l] 4F 5
1231-1311 LV,LRνe MLνeVLR LνeVLR[i,j,k,l] 4F 5
1312-1392 LV,LRee MLeeVLR LeeVLR[i,j,k,l] 4F 5
1393-1473 LV,LRνu MLνuVLR LνuVLR[i,j,k,l] 4F 5
1474-1554 LV,LRνd MLνdVLR LνdVLR[i,j,k,l] 4F 5
1555-1635 LV,LReu MLeuVLR LeuVLR[i,j,k,l] 4F 5
1636-1716 LV,LRed MLedVLR LedVLR[i,j,k,l] 4F 5
1717-1797 LV,LRue MLueVLR LueVLR[i,j,k,l] 4F 5
1798-1878 LV,LRde MLdeVLR LdeVLR[i,j,k,l] 4F 5
1879-1959 LV,LRνedu MLνeduVLR LνeduVLR[i,j,k,l] 4F 5
1960-2040 LV 1,LR

uu MLuuV1LR LuuV1LR[i,j,k,l] 4F 5
2041-2121 LV 8,LR

uu MLuuV8LR LuuV8LR[i,j,k,l] 4F 5
2122-2202 LV 1,LR

ud MLudV1LR LudV1LR[i,j,k,l] 4F 5
2203-2283 LV 8,LR

ud MLudV8LR LudV8LR[i,j,k,l] 4F 5
2284-2364 LV 1,LR

du MLduV1LR LduV1LR[i,j,k,l] 4F 5
2365-2445 LV 8,LR

du MLduV8LR LduV8LR[i,j,k,l] 4F 5
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2446-2526 LV 1,LR
dd MLddV1LR LddV1LR[i,j,k,l] 4F 5

2527-2607 LV 8,LR
dd MLddV8LR LddV8LR[i,j,k,l] 4F 5

2608-2688 LV 1,LR
uddu MLudduV1LR LudduV1LR[i,j,k,l] 4F 5

2689-2769 LV 8,LR
uddu MLudduV8LR LudduV8LR[i,j,k,l] 4F 5

2770-2796 LS,RRee MLeeSRR LeeSRR[i,j,k,l] 4F 6
2797-2877 LS,RReu MLeuSRR LeuSRR[i,j,k,l] 4F 5
2878-2958 LT,RReu MLeuTRR LeuTRR[i,j,k,l] 4F 5
2959-3039 LS,RRed MLedSRR LedSRR[i,j,k,l] 4F 5
3040-3120 LT,RRed MLedTRR LedTRR[i,j,k,l] 4F 5
3121-3201 LS,RRνedu MLνeduSRR LνeduSRR[i,j,k,l] 4F 5
3202-3282 LT,RRνedu MLνeduTRR LνeduTRR[i,j,k,l] 4F 5
3283-3309 LS1,RRuu MLuuS1RR LuuS1RR[i,j,k,l] 4F 6
3310-3336 LS8,RRuu MLuuS8RR LuuS8RR[i,j,k,l] 4F 6
3337-3417 LS1,RRud MLudS1RR LudS1RR[i,j,k,l] 4F 5
3418-3498 LS8,RRud MLudS8RR LudS8RR[i,j,k,l] 4F 5
3499-3525 LS1,RRdd MLddS1RR LddS1RR[i,j,k,l] 4F 6
3526-3552 LS8,RRdd MLddS8RR LddS8RR[i,j,k,l] 4F 6
3553-3633 LS1,RRuddu MLudduS1RR LudduS1RR[i,j,k,l] 4F 5
3634-3714 LS8,RRuddu MLudduS8RR LudduS8RR[i,j,k,l] 4F 5
3715-3795 LS,RLeu MLeuSRL LeuSRL[i,j,k,l] 4F 5
3796-3876 LS,RLed MLedSRL LedSRL[i,j,k,l] 4F 5
3877-3957 LS,RLνedu MLνeduSRL LνeduSRL[i,j,k,l] 4F 5
3958-3963 LS,LLνν MLννSLL LννSLL[i,j,k,l] 4F 12
3964-4017 LS,LLνe MLνeSLL LνeSLL[i,j,k,l] 4F 9
4018-4044 LT,LLνe MLνeTLL LνeTLL[i,j,k,l] 4F 10
4045-4098 LS,LRνe MLνeSLR LνeSLR[i,j,k,l] 4F 9
4099-4152 LS,LLνu MLνuSLL LνuSLL[i,j,k,l] 4F 9
4153-4179 LT,LLνu MLνuTLL LνuTLL[i,j,k,l] 4F 10
4180-4233 LS,LRνu MLνuSLR LνuSLR[i,j,k,l] 4F 9
4234-4287 LS,LLνd MLνdSLL LνdSLL[i,j,k,l] 4F 9
4288-4314 LT,LLνd MLνdTLL LνdTLL[i,j,k,l] 4F 10
4315-4368 LS,LRνd MLνdSLR LνdSLR[i,j,k,l] 4F 9
4369-4449 LS,LLνedu MLνeduSLL LνeduSLL[i,j,k,l] 4F 5
4450-4530 LT,LLνedu MLνeduTLL LνeduTLL[i,j,k,l] 4F 5
4531-4611 LS,LRνedu MLνeduSLR LνeduSLR[i,j,k,l] 4F 5
4612-4692 LV,RLνedu MLνeduVRL LνeduVRL[i,j,k,l] 4F 5
4693-4773 LV,RRνedu MLνeduVRR LνeduVRR[i,j,k,l] 4F 5
4774-4854 LS,LLudd MLuddSLL LuddSLL[i,j,k,l] 4F 5
4855-4935 LS,LLduu MLduuSLL LduuSLL[i,j,k,l] 4F 5
4936-4962 LS,LRuud MLuudSLR LuudSLR[i,j,k,l] 4F 10
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4963-5043 LS,LRduu MLduuSLR LduuSLR[i,j,k,l] 4F 5
5044-5070 LS,RLuud MLuudSRL LuudSRL[i,j,k,l] 4F 10
5071-5151 LS,RLduu MLduuSRL LduuSRL[i,j,k,l] 4F 5
5152-5232 LS,RLdud MLdudSRL LdudSRL[i,j,k,l] 4F 5
5233-5259 LS,RLddu MLdduSRL LdduSRL[i,j,k,l] 4F 10
5260-5340 LS,RRduu MLduuSRR LduuSRR[i,j,k,l] 4F 5
5341-5364 LS,LLddd MLdddSLL LdddSLL[i,j,k,l] 4F 13
5365-5445 LS,LRudd MLuddSLR LuddSLR[i,j,k,l] 4F 5
5446-5472 LS,LRddu MLdduSLR LdduSLR[i,j,k,l] 4F 10
5473-5499 LS,LRddd MLdddSLR LdddSLR[i,j,k,l] 4F 10
5500-5526 LS,RLddd MLdddSRL LdddSRL[i,j,k,l] 4F 10
5527-5607 LS,RRudd MLuddSRR LuddSRR[i,j,k,l] 4F 5
5608-5631 LS,RRddd MLdddSRR LdddSRR[i,j,k,l] 4F 13

C.3 The symmetric and independent bases

DsixTools allows the user to introduce an arbitrary input for the WCs of the SMEFT in
the Warsaw basis, and of the LEFT in the San Diego basis. In order to work only with
independent parameters two different operator bases are used in DsixTools that drop all
redundant WCs, and the user input and the results obtained from it can be expressed in terms
of any of them. The first non-redundant basis, the independent basis, contains only the WCs
with the flavour indices as listed in Tables 15 and 16 for each symmetry category, all other
WCs being set to zero. In the second minimal basis, the symmetric basis, the redundancies
in the WCs are removed by imposing that the latter follow the same symmetry relations
as the corresponding operators. This is a convenient choice since the index symmetry of
the operators is translated to the corresponding WCs. In order to simplify intermediate
calculations done in this basis (e.g. in the RGEs) only the independent WCs listed for each
category in Tables 15 and 16 are used. But unlike in the independent basis, the rest of
WCs do not vanish but relate to the former following the same symmetry relations as the
operators of the corresponding category. For instance, if we consider a 4-fermion operator
with two identical ψ̄ψ currents (ψ singlet) (i.e. either Qee in the SMEFT, or OV,RRee , OV,LLee

and OV,LLνν in the LEFT), which belongs to category 8 in Table 14,∑
prst

CprstQprst , (C.1)

its WCs in the symmetric basis fulfill the relations Cstpr = Cprst (because the two flavour
currents are identical), Crpts = Cprst (due to hermiticity), and Cptsr = Cprst (as a consequence
of the Fierz identity satisfied by the flavour components of the operator). Note that the sum
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in (C.1) runs over all possible values of the fermion flavour indices (p, r, s, t). The same
operator in the independent basis reads, however,∑

{prst} ∈ cat. 8

(real C̃)

C̃prstQprst +
∑

{prst} ∈ cat. 8

(complex C̃)

(
C̃prstQprst + h.c.

)
, (C.2)

where now the sums comprise only the 21 (6 real and 15 complex) independent components
listed under category 8 of Table 16, and all other C̃prst vanish.

It is straightforward to relate the WCs in the symmetric basis to those of the inde-
pendent basis by using the symmetry relations satisfied by the operators. Let us provide
an explicit example for illustration. Consider the contribution to the Lagrangian of the
operator OS,LLνν,prst =

(
νTL,pCνL,r

) (
νTL,sCνL,t

)
of the LEFT, which belongs to the symmetry

category 12. Its flavour components are symmetric under the exchange of indices p ↔ r,
s↔ t and (p, r)↔ (s, t), and further satisfy the Fierz identity Oprst = −Optsr−Otrsp. These
relations reduce the number of independent components to just six. In the symmetric basis
the contribution of this operator to the Lagrangian reads∑

prst

CprstOS,LLνν, prst , (C.3)

where the Cprst inherit the same index symmetries as those of the operator. Using those we
can relate the 81 flavour components to the six independent ones chosen for category 12 (see
Table 16). In this way, (C.3) reduces to

3C1122OS,LLνν,1122 + 6C1123OS,LLνν,1123 + 3C1133OS,LLνν,1133

+ 24C1223OS,LLνν,1223 + 6C1233OS,LLνν,1233 + 3C2233OS,LLνν,2233 . (C.4)

(C.4) matches the form of this operator in the independent basis, and thus allow us to read
off the WCs in that basis in terms of the symmetric basis WCs:

C̃1122 = 3C1122 , C̃1123 = 6C1123 , C̃1133 = 3C1133 , (C.5)

C̃1223 = 24C1223 , C̃1233 = 6C1233 , C̃2233 = 3C2233 . (C.6)

D Evolution matrix formalism

DsixTools 2.0 provides a new and much faster method of solving the RGE equations that
relies on an semi-analytical solution of the RGE equations. To explain this method, we focus
on the case where only dimension four and dimension six operators are present, and discuss
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the addition of dimension five operators at the end. The SMEFT and LEFT RGE equations
can then be generically written as

dC(4)

i (t)

dt
=

1

16π2
γ(4)

ij (C(4)

k , C
(6)

k )C(4)

j (t) , (D.1)

dC(6)

i (t)

dt
=

1

16π2
γ(6)

ij (C(4)

k )C(6)

j (t) , (D.2)

where i, j, k span the number of EFT operators, t ≡ lnµ, and γ is the anomalous dimension
matrix (ADM). The superindices (4) and (6) denote, respectively, quantities associated to
dimension four and six operators, and we have neglected contributions from C(6)

k in γ(6),
since these correspond to higher orders in the EFT expansion. An analytical solution to this
system of coupled differential equations is not known, and one is generally forced to solve
it numerically. Given the large number of equations involved, such numerical solution can
be relatively slow. However, it is important to note that (D.2) still contains contributions
that are higher order in the EFT expansion. Indeed, by noting that C(6)

k ∼ O(1/Λ2), we can
rewrite (D.1) as

dC(4)

i (t)

dt
=

1

16π2
γ(4)

ij (C(4)

k )C(4)

j (t) +O(1/Λ2) , (D.3)

with γ(4)

ij (C(4)

k ) ≡ γ(4)

ij (C(4)

k , 0). These equations correspond to the SM (or QCD and QED)
RGE equations, and γ(4)

ij (C(4)

k ) is known up to three loops [38–41] and even up to five loops
in QCD for the quark masses and QCD coupling [42–44]. The numerical solution of this
system of equations is much faster, given the reduced number of C(4)

k coefficients, and only
needs to be performed once for a given set of experimental inputs. As a result, we get

C(4)

k (t) = Ĉ(4)

k (t) +O(1/Λ2) , (D.4)

with Ĉ(4)

k (t) being interpolating functions obtained from the numerical solution of (D.3).
Using this solution, we can rewrite (D.2) as

dC(6)

i (t)

dt
=

1

16π2
γ(6)

ij (Ĉ(4)

k )C(6)

j (t) +O(1/Λ4) ≡ γ̂(6)

ij (t)C(6)

j (t) +O(1/Λ4) , (D.5)

such that, up to corrections that are higher order in the EFT expansion, the ADM is just
a function of t, completely fixed in terms of the interpolating functions Ĉ(4)

k (t). Neglecting
terms of O(1/Λ2), the system of differential equations in (D.5) is solved by

C(6)

i (t) = U (6)

ij (t, t0)C
(6)

j (t0) , (D.6)

where t0 ≡ lnµ0, with µ0 being the input scale of the dimension-six WCs, and U (6) is an
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evolution matrix that is given in terms of γ̂(6)(t) by 13

U (6)(t, t0) = T
{

exp

(∫ t

t0

γ̂(6)(ω) dω

)}
=
∞∑
n=0

∫ t

t0

∫ ωn

t0

∫ ωn−1

t0

· · ·
∫ ω2

t0

γ̂(6)(ω1) . . . γ̂
(6)(ωn) dω1 . . . dωn ,

(D.7)

where T denotes t-ordering. Obtaining the evolution matrix is computationally expensive.
However, since it is independent of the dimension-six input, it only needs to be determined
once (for a given set of SM inputs). DsixTools 2.0 already contains a pre-computed evolution
matrix for the inputs given in Table 1. Once the evolution matrix is known, the evaluation
of (D.6) is very fast. The solution for C(6)

i (t) in (D.6) can then be plugged into the equations
for the dimension-four WCs in (D.1). These equations need to be solved numerically, but
given the small number of equations, obtaining this numerical solution is considerably faster
than solving the whole system.

Finally, we comment on the inclusion of dimension five operators, since these can poten-
tially modify the method discussed here. The only dimension five operator in the SMEFT is
the Weinberg operator. Since its WC is expected to be very small, given the smallness of the
neutrino masses, we neglect its mixing to dimension-six SMEFT operators, which requires a
double insertion of this operator. Once this contribution is neglected, the evolution matrix
formalism can be trivially extended to include also the Weinberg operator. In the case of
the LEFT, the presence of dimension-five dipole could be addressed by extending the above
procedure order-by-order. The end result would be a numerical evolution matrix which takes
into account the effect of double dipole insertions in the running of C(6). What we do is
to produce the numerical evolution matrix neglecting double dipole insertions in the beta
functions, and test the results of running with this evolution matrix against the exact results.
We find that the agreement is numerically very accurate for all practical cases. However,
the user should keep this in mind when considering applications with large contributions to
dipole operators. In such situations it might be wise to compare the results of RGEsMethod=3
with those obtained with RGEsMethod=1 in a few cases. If significant effects from double
dipole insertions are found, then running with RGEsMethod=1 would be advised.

References

[1] W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and
Flavor Conservation, Nucl. Phys. B 268 (1986) 621–653.

13 In practice, it proves more convenient to determine the evolution matrix in (D.6) by numerically
solving (D.5) for a set of linearly independent C(6)

j (t0) test inputs, rather than by using (D.7).

53

https://doi.org/10.1016/0550-3213(86)90262-2


[2] E. E. Jenkins, A. V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below
the Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016, [1709.04486].

[3] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the
Standard Model Lagrangian, JHEP 10 (2010) 085, [1008.4884].

[4] E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization Group Evolution of the
Standard Model Dimension Six Operators I: Formalism and lambda Dependence,
JHEP 10 (2013) 087, [1308.2627].

[5] E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization Group Evolution of the
Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014)
035, [1310.4838].

[6] R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization Group
Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling
Dependence and Phenomenology, JHEP 04 (2014) 159, [1312.2014].

[7] R. Alonso, H.-M. Chang, E. E. Jenkins, A. V. Manohar and B. Shotwell,
Renormalization group evolution of dimension-six baryon number violating operators,
Phys. Lett. B 734 (2014) 302–307, [1405.0486].

[8] E. E. Jenkins, A. V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below
the Electroweak Scale: Anomalous Dimensions, JHEP 01 (2018) 084, [1711.05270].

[9] W. Dekens and P. Stoffer, Low-energy effective field theory below the electroweak scale:
matching at one loop, JHEP 10 (2019) 197, [1908.05295].

[10] J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant
dimension-six operators for b→ s and b→ c transitions, JHEP 05 (2016) 037,
[1512.02830].

[11] T. Hurth, S. Renner and W. Shepherd, Matching for FCNC effects in the
flavour-symmetric SMEFT, JHEP 06 (2019) 029, [1903.00500].

[12] B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field
theory, JHEP 01 (2016) 023, [1412.1837].

[13] A. Drozd, J. Ellis, J. Quevillon and T. You, The Universal One-Loop Effective Action,
JHEP 03 (2016) 180, [1512.03003].

[14] F. del Aguila, Z. Kunszt and J. Santiago, One-loop effective lagrangians after
matching, Eur. Phys. J. C 76 (2016) 244, [1602.00126].

[15] M. Boggia, R. Gomez-Ambrosio and G. Passarino, Low energy behaviour of standard
model extensions, JHEP 05 (2016) 162, [1603.03660].

54

https://doi.org/10.1007/JHEP03(2018)016
https://arxiv.org/abs/1709.04486
https://doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884
https://doi.org/10.1007/JHEP10(2013)087
https://arxiv.org/abs/1308.2627
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP01(2014)035
https://arxiv.org/abs/1310.4838
https://doi.org/10.1007/JHEP04(2014)159
https://arxiv.org/abs/1312.2014
https://doi.org/10.1016/j.physletb.2014.05.065
https://arxiv.org/abs/1405.0486
https://doi.org/10.1007/JHEP01(2018)084
https://arxiv.org/abs/1711.05270
https://doi.org/10.1007/JHEP10(2019)197
https://arxiv.org/abs/1908.05295
https://doi.org/10.1007/JHEP05(2016)037
https://arxiv.org/abs/1512.02830
https://doi.org/10.1007/JHEP06(2019)029
https://arxiv.org/abs/1903.00500
https://doi.org/10.1007/JHEP01(2016)023
https://arxiv.org/abs/1412.1837
https://doi.org/10.1007/JHEP03(2016)180
https://arxiv.org/abs/1512.03003
https://doi.org/10.1140/epjc/s10052-016-4081-1
https://arxiv.org/abs/1602.00126
https://doi.org/10.1007/JHEP05(2016)162
https://arxiv.org/abs/1603.03660


[16] B. Henning, X. Lu and H. Murayama, One-loop Matching and Running with
Covariant Derivative Expansion, JHEP 01 (2018) 123, [1604.01019].

[17] S. A. R. Ellis, J. Quevillon, T. You and Z. Zhang, Mixed heavy–light matching in the
Universal One-Loop Effective Action, Phys. Lett. B 762 (2016) 166–176, [1604.02445].

[18] J. Fuentes-Martin, J. Portoles and P. Ruiz-Femenia, Integrating out heavy particles
with functional methods: a simplified framework, JHEP 09 (2016) 156, [1607.02142].

[19] Z. Zhang, Covariant diagrams for one-loop matching, JHEP 05 (2017) 152,
[1610.00710].

[20] S. A. R. Ellis, J. Quevillon, T. You and Z. Zhang, Extending the Universal One-Loop
Effective Action: Heavy-Light Coefficients, JHEP 08 (2017) 054, [1706.07765].

[21] M. Krämer, B. Summ and A. Voigt, Completing the scalar and fermionic Universal
One-Loop Effective Action, JHEP 01 (2020) 079, [1908.04798].

[22] S. A. Ellis, J. Quevillon, P. N. H. Vuong, T. You and Z. Zhang, The Fermionic
Universal One-Loop Effective Action, 2006.16260.

[23] J. Aebischer, M. Fael, A. Lenz, M. Spannowsky and J. Virto, Computing Tools for the
SMEFT, 1910.11003.

[24] A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, DsixTools: The Standard Model
Effective Field Theory Toolkit, Eur. Phys. J. C 77 (2017) 405, [1704.04504].

[25] B. Gripaios and D. Sutherland, DEFT: A program for operators in EFT, JHEP 01
(2019) 128, [1807.07546].

[26] J. C. Criado, BasisGen: automatic generation of operator bases, Eur. Phys. J. C 79
(2019) 256, [1901.03501].

[27] A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho and L. Trifyllis, SmeftFR – Feynman
rules generator for the Standard Model Effective Field Theory, Comput. Phys.
Commun. 247 (2020) 106931, [1904.03204].

[28] J. C. Criado, MatchingTools: a Python library for symbolic effective field theory
calculations, Comput. Phys. Commun. 227 (2018) 42–50, [1710.06445].

[29] S. Das Bakshi, J. Chakrabortty and S. K. Patra, CoDEx: Wilson coefficient calculator
connecting SMEFT to UV theory, Eur. Phys. J. C 79 (2019) 21, [1808.04403].

[30] J. Aebischer, J. Kumar and D. M. Straub, Wilson: a Python package for the running
and matching of Wilson coefficients above and below the electroweak scale, Eur. Phys.
J. C 78 (2018) 1026, [1804.05033].

55

https://doi.org/10.1007/JHEP01(2018)123
https://arxiv.org/abs/1604.01019
https://doi.org/10.1016/j.physletb.2016.09.016
https://arxiv.org/abs/1604.02445
https://doi.org/10.1007/JHEP09(2016)156
https://arxiv.org/abs/1607.02142
https://doi.org/10.1007/JHEP05(2017)152
https://arxiv.org/abs/1610.00710
https://doi.org/10.1007/JHEP08(2017)054
https://arxiv.org/abs/1706.07765
https://doi.org/10.1007/JHEP01(2020)079
https://arxiv.org/abs/1908.04798
https://arxiv.org/abs/2006.16260
https://arxiv.org/abs/1910.11003
https://doi.org/10.1140/epjc/s10052-017-4967-6
https://arxiv.org/abs/1704.04504
https://doi.org/10.1007/JHEP01(2019)128
https://doi.org/10.1007/JHEP01(2019)128
https://arxiv.org/abs/1807.07546
https://doi.org/10.1140/epjc/s10052-019-6769-5
https://doi.org/10.1140/epjc/s10052-019-6769-5
https://arxiv.org/abs/1901.03501
https://doi.org/10.1016/j.cpc.2019.106931
https://doi.org/10.1016/j.cpc.2019.106931
https://arxiv.org/abs/1904.03204
https://doi.org/10.1016/j.cpc.2018.02.016
https://arxiv.org/abs/1710.06445
https://doi.org/10.1140/epjc/s10052-018-6444-2
https://arxiv.org/abs/1808.04403
https://doi.org/10.1140/epjc/s10052-018-6492-7
https://doi.org/10.1140/epjc/s10052-018-6492-7
https://arxiv.org/abs/1804.05033


[31] N. P. Hartland, F. Maltoni, E. R. Nocera, J. Rojo, E. Slade, E. Vryonidou et al., A
Monte Carlo global analysis of the Standard Model Effective Field Theory: the top
quark sector, JHEP 04 (2019) 100, [1901.05965].

[32] J. Aebischer, J. Kumar, P. Stangl and D. M. Straub, A Global Likelihood for Precision
Constraints and Flavour Anomalies, Eur. Phys. J. C 79 (2019) 509, [1810.07698].

[33] D. van Dyk et al., “EOS — A HEP program for Flavor Observables.”
https://eos.github.io.

[34] D. M. Straub, flavio: a Python package for flavour and precision phenomenology in
the Standard Model and beyond, 1810.08132.

[35] I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP 12
(2017) 070, [1709.06492].

[36] Wolfram Research, Inc., Mathematica, Version 11.0, Champaign, IL (2016).

[37] J. Aebischer, M. Fael, C. Greub and J. Virto, B physics Beyond the Standard Model at
One Loop: Complete Renormalization Group Evolution below the Electroweak Scale,
JHEP 09 (2017) 158, [1704.06639].

[38] A. Bednyakov, A. Pikelner and V. Velizhanin, Anomalous dimensions of gauge fields
and gauge coupling beta-functions in the Standard Model at three loops, JHEP 01
(2013) 017, [1210.6873].

[39] A. Bednyakov, A. Pikelner and V. Velizhanin, Yukawa coupling beta-functions in the
Standard Model at three loops, Phys. Lett. B 722 (2013) 336–340, [1212.6829].

[40] A. Bednyakov, A. Pikelner and V. Velizhanin, Higgs self-coupling beta-function in the
Standard Model at three loops, Nucl. Phys. B 875 (2013) 552–565, [1303.4364].

[41] A. Bednyakov, A. Pikelner and V. Velizhanin, Three-loop SM beta-functions for matrix
Yukawa couplings, Phys. Lett. B 737 (2014) 129–134, [1406.7171].

[42] T. van Ritbergen, J. Vermaseren and S. Larin, The Four loop beta function in
quantum chromodynamics, Phys. Lett. B 400 (1997) 379–384, [hep-ph/9701390].

[43] J. Vermaseren, S. Larin and T. van Ritbergen, The four loop quark mass anomalous
dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327–333,
[hep-ph/9703284].

[44] P. Baikov, K. Chetyrkin and J. Kühn, Five-loop fermion anomalous dimension for a
general gauge group from four-loop massless propagators, JHEP 04 (2017) 119,
[1702.01458].

56

https://doi.org/10.1007/JHEP04(2019)100
https://arxiv.org/abs/1901.05965
https://doi.org/10.1140/epjc/s10052-019-6977-z
https://arxiv.org/abs/1810.07698
https://eos.github.io
https://arxiv.org/abs/1810.08132
https://doi.org/10.1007/JHEP12(2017)070
https://doi.org/10.1007/JHEP12(2017)070
https://arxiv.org/abs/1709.06492
https://doi.org/10.1007/JHEP09(2017)158
https://arxiv.org/abs/1704.06639
https://doi.org/10.1007/JHEP01(2013)017
https://doi.org/10.1007/JHEP01(2013)017
https://arxiv.org/abs/1210.6873
https://doi.org/10.1016/j.physletb.2013.04.038
https://arxiv.org/abs/1212.6829
https://doi.org/10.1016/j.nuclphysb.2013.07.015
https://arxiv.org/abs/1303.4364
https://doi.org/10.1016/j.physletb.2014.08.049
https://arxiv.org/abs/1406.7171
https://doi.org/10.1016/S0370-2693(97)00370-5
https://arxiv.org/abs/hep-ph/9701390
https://doi.org/10.1016/S0370-2693(97)00660-6
https://arxiv.org/abs/hep-ph/9703284
https://doi.org/10.1007/JHEP04(2017)119
https://arxiv.org/abs/1702.01458


[45] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a
General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B
222 (1983) 83–103.

[46] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a
General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984)
221–232.

[47] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a
General Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B 249
(1985) 70–92.

[48] M.-x. Luo and Y. Xiao, Two loop renormalization group equations in the standard
model, Phys. Rev. Lett. 90 (2003) 011601, [hep-ph/0207271].

[49] S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator
renormalization revisited, Phys. Lett. B 519 (2001) 238–242, [hep-ph/0108005].

[50] K. Chetyrkin, J. H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for
running and decoupling of the strong coupling and quark masses, Comput. Phys.
Commun. 133 (2000) 43–65, [hep-ph/0004189].

[51] J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the
Standard Model, Comput. Phys. Commun. 232 (2018) 71–83, [1712.05298].

[52] DsixTools website: https://dsixtools.github.io.

[53] S. Descotes-Genon, A. Falkowski, M. Fedele, M. González-Alonso and J. Virto, The
CKM parameters in the SMEFT, JHEP 05 (2019) 172, [1812.08163].

[54] A. Carmona, A. Lazopoulos, P. Olgoso and J. Santiago, Matchmakereft: automated
tree-level and one-loop matching, SciPost Phys. 12 (2022) 198, [2112.10787].

[55] P. Z. Skands et al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators,
decay packages, and event generators, JHEP 07 (2004) 036, [hep-ph/0311123].

[56] B. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun. 180 (2009)
8–25, [0801.0045].

[57] Z. Bjornson, “MYaml.” https://github.com/zbjornson/MYaml.

[58] S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979)
1566–1570.

[59] L. Abbott and M. B. Wise, The Effective Hamiltonian for Nucleon Decay, Phys. Rev.
D 22 (1980) 2208.

57

https://doi.org/10.1016/0550-3213(83)90610-7
https://doi.org/10.1016/0550-3213(83)90610-7
https://doi.org/10.1016/0550-3213(84)90533-9
https://doi.org/10.1016/0550-3213(84)90533-9
https://doi.org/10.1016/0550-3213(85)90040-9
https://doi.org/10.1016/0550-3213(85)90040-9
https://doi.org/10.1103/PhysRevLett.90.011601
https://arxiv.org/abs/hep-ph/0207271
https://doi.org/10.1016/S0370-2693(01)01127-3
https://arxiv.org/abs/hep-ph/0108005
https://doi.org/10.1016/S0010-4655(00)00155-7
https://doi.org/10.1016/S0010-4655(00)00155-7
https://arxiv.org/abs/hep-ph/0004189
https://doi.org/10.1016/j.cpc.2018.05.022
https://arxiv.org/abs/1712.05298
https://dsixtools.github.io
https://doi.org/10.1007/JHEP05(2019)172
https://arxiv.org/abs/1812.08163
https://doi.org/10.21468/SciPostPhys.12.6.198
https://arxiv.org/abs/2112.10787
https://doi.org/10.1088/1126-6708/2004/07/036
https://arxiv.org/abs/hep-ph/0311123
https://doi.org/10.1016/j.cpc.2008.08.004
https://doi.org/10.1016/j.cpc.2008.08.004
https://arxiv.org/abs/0801.0045
https://github.com/zbjornson/MYaml
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1103/PhysRevD.22.2208
https://doi.org/10.1103/PhysRevD.22.2208

	1 Introduction
	2 DsixTools in a nutshell
	2.1 Overview of DsixTools 2.0
	2.2 Differences with DsixTools 1.0

	3 Downloading, installing and loading DsixTools
	4 Using DsixTools
	4.1 A DsixTools program
	4.2 Input values in DsixTools
	4.3 RGE running
	4.4 SMEFT-LEFT matching at the electroweak scale
	4.5 Reference guide and tools in DsixTools
	4.6 Summary of DsixTools routines

	5 Summary
	A Standard Model Effective Field Theory
	B Low-Energy Effective Field Theory
	C SMEFT and LEFT parameters
	C.1 SMEFT parameters
	C.2 LEFT parameters
	C.3 The symmetric and independent bases

	D Evolution matrix formalism

